Skip to main content
Log in

Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator Methylene Blue

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a voltammetric method for the determination of arsenite [As(III)] based on an As(III)-specific binding probe DNA (SBP DNA; a single-stranded DNA) and the electrochemical indicator Methylene Blue (MB). The SBP DNA was first hybridized with a capture probe (CP) DNA on the surface of a gold electrode. Then, MB was intercalated into the SBP/CP hybrid on the electrode. On addition of As(III), it specifically binds to the SBP DNA, and this results in a conformational change and the dissociation of the SBP DNA from the electrode into solution. Consequently, the amount of MB remaining on the modified electrode is reduced, and this decreases the peak current of MB (best measured at −0.28 V vs. SCE). The findings are exploited in an assay for As(III) that has a linear response in the 0.1 to 200 ppb concentration range and a detection limit as low as 75 ppt. Conceivably, this method can be extended by designing various specific ssDNA oligonucleotides for other heavy metal ions or for small molecules.

Electrochemical method for trace As(III) detection based on As(III)-induced specific binding probe ssDNA (SBP DNA) conformational change and the electrochemical indicator Methylene blue (MB). CP refers to capture probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma J, Sengupta MK, Yuan D, Dasgupta PK (2014) Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods. Anal Chim Acta 831:1–23. doi:10.1016/j.aca.2014.04.029

    Article  CAS  Google Scholar 

  2. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759. doi:10.1016/j.envint.2009.01.005

    Article  CAS  Google Scholar 

  3. WHO Arsenic:WHO response http://www.who.int/mediacentre/factsheets/fs372/en/ Accessed June 2016

  4. Huang M, Chen X, Zhao Y, Chan CY, Wang W, Wang X, Wong MH (2014) Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ Pollut 188:37–44. doi:10.1016/j.envpol.2014.01.001

    Article  CAS  Google Scholar 

  5. Sitko R, Janik P, Zawisza B, Talik E, Margui E, Queralt I (2015) Green approach for Ultratrace determination of divalent metal ions and arsenic species using Total-reflection X-ray fluorescence spectrometry and Mercapto-modified graphene oxide Nanosheets as a novel adsorbent. Anal Chem 87:3535–3542. doi:10.1021/acs.analchem.5b00283

    Article  CAS  Google Scholar 

  6. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in south and Southeast Asia. Science 328:1123–1127. doi:10.1126/science.1172974

    Article  CAS  Google Scholar 

  7. EPA drinking water requirements for states and public water systems: chemical contaminant rules-Background Information on Arsenic. http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/regulations.cfm Accessed Nov 2013

  8. Rabieh S, Bagheri M, Planer-Friedrich B (2013) Speciation of arsenite and arsenate by electrothermal AAS following ionic liquid dispersive liquid-liquid microextraction. Microchim Acta 180:415–421. doi:10.1007/s00604-013-0946-2

    Article  CAS  Google Scholar 

  9. Hassanpoor S, Khayatian G, Azar ARJ (2015) Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization. Microchim Acta 182:1957–1965. doi:10.1007/s00604-015-1532-6

    Article  CAS  Google Scholar 

  10. Musil S, Matoušek T, Currier JM, Stýblo M, Dědina J (2014) Speciation analysis of arsenic by selective hydride generation-Cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation. Anal Chem 86:10422–10428. doi:10.1021/ac502931k

    Article  CAS  Google Scholar 

  11. Wu Y, Zhan S, Wang F, He L, Zhi W, Zhou P (2012) Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution. Chem Commun 48:4459–4461. doi:10.1039/c2cc30384a

    Article  CAS  Google Scholar 

  12. Liang RP, Wang ZX, Zhang L, Qiu JD (2013) Label-free colorimetric detection of Arsenite utilizing G−/T-rich oligonucleotides and unmodified au nanoparticles. Chem Eur J 19:5029–5033. doi:10.1002/chem.201203402

    Article  CAS  Google Scholar 

  13. Gong L, Du B, Pan L, Liu Q, Yang K, Wang W, Zhao H, Wu L, He Y (2017) Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Microchim Acta 184:1185–1190. doi:10.1007/s00604-017-2122-6

    Article  CAS  Google Scholar 

  14. Roy S, Palui G, Banerjee A (2012) The as-prepared gold cluster-based fluorescent sensor for the selective detection of As III ions in aqueous solution. Nano 4:2734–2740. doi:10.1039/c2nr11786j

    CAS  Google Scholar 

  15. Zhou Y, Huang X, Liu C, Zhang R, Gu X, Guan G, Jiang C, Zhang L, Du S, Liu B, Han M-Y, Zhang Z (2016) Color-multiplexing-based fluorescent test paper: dosage-sensitive visualization of arsenic(III) with discernable scale as low as 5 ppb. Anal Chem 88:6105–6109. doi:10.1021/acs.analchem.6b01248

    Article  CAS  Google Scholar 

  16. Wu Y, Zhan S, Xing H, He L, Xu L, Zhou P (2012) Nanoparticles assembled by aptamers and crystal violet for arsenic(iii) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nano 4:6841–6849. doi:10.1039/c2nr31418e

    CAS  Google Scholar 

  17. Li J, Chen L, Lou T, Wang Y (2011) Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces 3:3936–3941. doi:10.1021/am200810x

    Article  CAS  Google Scholar 

  18. Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290. doi:10.1016/j.talanta.2015.08.052

    Article  CAS  Google Scholar 

  19. Lan Y, Luo H, Ren X, Wang Y, Liu Y (2012) Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold-palladium bimetallic nanoparticles. Microchim Acta 178:153–161. doi:10.1007/s00604-012-0827-0

    Article  CAS  Google Scholar 

  20. Zhou S-F, Han X-J, Fan H-L, Zhang Q-X, Liu Y-Q (2015) Electrochemical detection of As (III) through mesoporous MnFe2O4 nanocrystal clusters by square wave stripping voltammetry. Electrochim Acta 174:1160–1166. doi:10.1016/j.electacta.2015.06.036

    Article  CAS  Google Scholar 

  21. Devi P, Bansod B, Kaur M, Bagchi S, Nayak MK (2016) Co-electrodeposited rGO/MnO2 nanohybrid for arsenite detection in water by stripping voltammetry. Sensors Actuators B Chem 237:652–659. doi:10.1016/j.snb.2016.06.124

    Article  CAS  Google Scholar 

  22. Cui L, Wu J, Ju H (2016) Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens Bioelectron 79:861–865. doi:10.1016/j.bios.2016.01.010

    Article  CAS  Google Scholar 

  23. Luong JH, Lam E, Male KB (2014) Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal Methods 6:6157–6169. doi:10.1039/c4ay00817k

    Article  CAS  Google Scholar 

  24. Liu Z-G, Huang X-J (2014) Voltammetric determination of inorganic arsenic. TrAC Trend Anal Chem 60:25–35. doi:10.1016/j.trac.2014.04.014

    Article  CAS  Google Scholar 

  25. Gupta R, Gamare JS, Pandey AK, Tyagi D, Kamat JV (2016) Highly sensitive detection of Arsenite based on its affinity toward ruthenium nanoparticles decorated on glassy carbon electrode. Anal Chem 88:2459–2465. doi:10.1021/acs.analchem.5b04625

    Article  CAS  Google Scholar 

  26. Moghimi N, Mohapatra M, Leung KT (2015) Bimetallic nanoparticles for arsenic detection. Anal Chem 87:5546–5552. doi:10.1021/ac504116d

    Article  CAS  Google Scholar 

  27. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286. doi:10.1016/j.bios.2014.07.052

    Article  CAS  Google Scholar 

  28. Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139. doi:10.1016/j.bios.2016.11.039

    Article  CAS  Google Scholar 

  29. Liu R, Chen Z, Wang Y, Cui Y, Zhu H, Huang P, Li W, Zhao Y, Tao Y, Gao X (2011) Nanoprobes: quantitatively detecting the femtogram level of arsenite ions in live cells. ACS Nano 5:5560–5565. doi:10.1021/nn200994r

    Article  CAS  Google Scholar 

  30. Farjami E, Clima L, Gothelf KV, Ferapontova EE (2010) DNA interactions with a methylene blue redox indicator depend on the DNA length and are sequence specific. Analyst 135:1443–1448. doi:10.1039/c0an00049c

    Article  CAS  Google Scholar 

  31. Hou T, Li W, Liu X, Li F (2015) Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific MicroRNA assay. Anal Chem 87:11368–11374. doi:10.1021/acs.analchem.5b02790

    Article  CAS  Google Scholar 

  32. Park N, Hahn JH (2004) Electrochemical sensing of DNA hybridization based on duplex-specific charge compensation. Anal Chem 76:900–906. doi:10.1021/ac026368r

    Article  CAS  Google Scholar 

  33. Wang Y, Wang P, Wang Y, He X, Wang K (2015) Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection. Talanta 141:122–127. doi:10.1016/j.talanta.2015.03.040

    Article  CAS  Google Scholar 

  34. Sakira AK, Somé IT, Ziemons E, Dejaegher B, Mertens D, Hubert P, Kauffmann JM (2015) Determination of arsenic(III) at a nanogold modified solid carbon paste electrode. Electroanalysis 27:309–316. doi:10.1002/elan.201400485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21675078, 21475056), the Program for Major Academic and Technical Leaders of Jiangxi Province (20123BCB22003, 20162BCB22013) and the Landing Project of Science and Technology of Colleges in Jiangxi Province (KJLD13010, KJLD14009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruping Liang or Jianding Qiu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Zhang, C., Liang, R. et al. Highly sensitive voltammetric determination of arsenite by exploiting arsenite-induced conformational change of ssDNA and the electrochemical indicator Methylene Blue. Microchim Acta 184, 4047–4054 (2017). https://doi.org/10.1007/s00604-017-2432-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2432-8

Keywords

Navigation