Skip to main content
Log in

Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode was modified with a redox-active nanocomposite consisting of polyresorcinol, gold nanoparticles (NPs) and platinum NPs. This nanocomposite possesses the following outstanding advantages: (1) strong electrochemical signal towards H2O2 at 0.92 V (vs Ag/AgCl); (2) good conductivity; and (3) ease of immobilization of antibody without the use of coupling agents. Based on these properties, a label-free amperometric immunoassay for the tumor marker neuron-specific enolase (NSE) was developed. The immunoelectrode has a linear response in the 10 pg·mL−1 to 100 ng·mL−1 NSE concentration range and a 7.8 pg·mL−1 detection limit (at an SNR of 3). The method was applied to the quantitation of NSE in human serum samples and showed satisfactory accuracy compared to an electrochemiluminescence immunoassay, a commonly used method in clinical applications.

A novel multifunctional substrate was synthesized by a one-pot method using resorcinol as monomer, and HAuCl4 and H2PtCl6 as co-oxidizing agents. It was used to fabricate an ultrasensitive amperometric immunosensor for tumor biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu WT, Wang K, Xiao K, Qin WJ, Hou YF, Xu H, Yan XY, Chen YR, Cui DX, He JH (2017) Dual immunomagnetic nanobeads-based lateral flow test strip for simultaneous quantitative detection of carcinoembryonic antigen and neuron specific enolase. Sci Rep 7:42414

    Article  CAS  Google Scholar 

  2. Xiao K, Wang K, Qin WJ, Hou YF, Lu WT, Xu H, Wo Y, Cui DX (2017) Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta 164:463–469

    Article  CAS  Google Scholar 

  3. Gao WL, Wang WT, Yao SH, Wu S, Zhang HL, Zhang JS, Jing FX, Mao HJ, Jin QH, Cong H, Jia CP, Zhang GJ, Zhao JL (2017) Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays. Anal Chim Acta 958:77–84

    Article  CAS  Google Scholar 

  4. Wei Z, Zhang JP, Zhang AH, Wang YC, Cai XP (2017) Electrochemical detecting lung cancer-associated antigen based on graphene-gold nanocomposite. Molecules 22:392

    Article  Google Scholar 

  5. Shan J, Ma ZF (2016) Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Microchim Acta 183:2889–2897

    Article  CAS  Google Scholar 

  6. Wang CQ, Du J, Wang HW, Zou C, Jiang FX, Yang P, Du YK (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 204:302–309

    Article  CAS  Google Scholar 

  7. Zou C, Yang BB, Duan B, Wang J, Li SM, Yang P, Wang CQ, Shiraishi YK, Du YK (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interf Sci 488:135–141

    Article  CAS  Google Scholar 

  8. Wang MJ, Sun CY, Wang LY, Ji XH, Bai YB, Li TJ, Li JH (2003) Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. J Pharmaceut Biomed 33:1117–1125

    Article  CAS  Google Scholar 

  9. Wang ZP, Hu JQ, Jin Y, Yao X, Li JH (2006) In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin Chem 52:1958–1961

    Article  CAS  Google Scholar 

  10. Wang Y, Zhang S, Du D, Shao YY, Li ZH, Wang J, Engelhard MH, Li JH, Lin YH (2011) Self assembly of acetylcholinesterase on a gold nanoparticles-graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21:5319

    Article  CAS  Google Scholar 

  11. Buleandra M, Rabinca AA, Badea IA, Balan A, Stamatin I, Mihailciuc C, Ciucu AA (2017) Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Microchim Acta. doi:10.1007/s00604-017-2153-z

    Google Scholar 

  12. Wu L, Qu XG (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997

    Article  CAS  Google Scholar 

  13. Wang J, Chatrathi MP, Tian BM (2000) Capillary electrophoresis microchips with thick-film amperometric detectors: separation and detection of phenolic compounds. Anal Chim Acta 416:9–14

    Article  CAS  Google Scholar 

  14. Milson MS (2005) Electrochemical immunosensors for the simultaneous detection of two tumor markers. Anal Chem 77:1496–1502

    Article  Google Scholar 

  15. Nie GM, Li CX, Zhang L, Wang L (2014) Fabrication of a simple and sensitive QDs-based electrochemiluminescence immunosensor using a nanostructured composite material for the detection of tumor markers alpha-fetoprotein. J Mater Chem B 2:8321–8328

    Article  CAS  Google Scholar 

  16. Conti F, Dall'Agata M, Gramenzi A, Biselli M (2015) Biomarkers for the early diagnosis of bacterial infection and the surveillance of hepatocellular carcinoma in cirrhosis. Biomarkers Med 9:1343–1351

    Article  CAS  Google Scholar 

  17. Wang LY, Feng F, Ma ZF (2015) Novel electrochemical redoxactive species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay. Sci Rep 5:16855

    Article  CAS  Google Scholar 

  18. Wang ZF, Chen X, Ma ZF (2014) Chitosan coated copper and cadmium hexacyanocobaltate nanocubes as immunosensing probes for the construction of multiple analytes platform. Biosens Bioelectron 61:562–568

    Article  CAS  Google Scholar 

  19. Xu T, Jia XL, Chen X, Ma ZF (2014) Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocollidal gold. Biosens Bioelectron 56:174–179

    Article  CAS  Google Scholar 

  20. Feng DX, Lu XC, Dong X, Ling YY, Zhang YZ (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanopriticles. Microchim Acta 180:767–774

    Article  CAS  Google Scholar 

  21. Pandey B, Demchenko AV, Stine KJ (2012) Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen. Microchim Acta 179:71–81

    Article  CAS  Google Scholar 

  22. Rong QF, Han HL, Feng F, Ma ZF (2015) Network nanostructured polypyrrole hydrogel/au composites as enhanced electrochemical biosensing platform. Sci Rep 5:11440

    Article  Google Scholar 

  23. Wang HQ, Rong QF, Ma ZF (2016) Polyhydroquinone-graphene composite as new redox species for sensitive electrochemical detection of cytokeratins antigen 21-1. Sci Rep 6:30623

    Article  CAS  Google Scholar 

  24. He S (2015) One-step synthesis of potassium ferricyanide-doped polyaniline nanoparticles for label-free immunosensor. Biosens Bioelectron 68:462–467

    Article  CAS  Google Scholar 

  25. Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z (2015) Synthesis and electrocatalytic effect of Ag@Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron 74:30–36

    Article  CAS  Google Scholar 

  26. Sun XB, Ma ZF (2012) Highly stable electrochemical immunosensor for carcinembryonic antigen. Biosens Bioelectron 35:470–474

    Article  CAS  Google Scholar 

  27. Shi WT, Ma ZF (2011) A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. Biosens Bioelectron 26:3068–3071

    Article  CAS  Google Scholar 

  28. Zhou CY, Liu DL, Xu L, Li QL, Song J, Xu S (2015) A sensitive label–free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio. Sci Rep 5:9939

    Article  Google Scholar 

  29. Gao Q, Han JM, Ma ZF (2013) Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 49:323–328

    Article  CAS  Google Scholar 

  30. Kumar P, Sharma SC, Deep A (2014) Bioconjugation of anti estrogen alpha antibody with CdSSe/ZnS quantum dots for molecular sensing of a breast cancer antigen. Sensors Actuators B Chem 202:404–409

    Article  CAS  Google Scholar 

  31. Liu N, Feng F, Liu ZM, Ma ZF (2014) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 182:1143–1151

    Article  Google Scholar 

  32. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561

    Article  CAS  Google Scholar 

  33. Gao Q, Liu N, Ma ZF (2014) Prussian blue–gold nanoparticles-ionic liquid functionalized reduced graphene oxide nanocomposite as label for ultrasensitive electrochemical immunoassay of alpha-fetoprotein. Anal Chim Acta 829:15–21

    Article  CAS  Google Scholar 

  34. Kumar S (2015) Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens Bioelectron 73:114–122

    Article  CAS  Google Scholar 

  35. Liu N, Wang ZF, Ma ZF (2014) Platinum porous nanoparticles for the detection of cancer biomarkers: what are the advantages over existing techniques? Bioanalysis 6:903–905

    Article  CAS  Google Scholar 

  36. Liu JF, Lin GH, Xiao C, Xue Y, Yang AK, Ren HX (2015) Sensitive electrochemical immunosensor for alpha-fetoprotein based on graphene/SnO2/Au nanocomposite. Biosens Bioelectron 71:82–87

    Article  CAS  Google Scholar 

  37. Tang J, Su BL, Tang DP, Chen GN (2010) Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for alpha-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement. Biosens Bioelectron 25:2657–2662

    Article  CAS  Google Scholar 

  38. Ho JA, Lin YC, Wang LS, Hwang KC, Chou PT (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem 81:1340–1346

    Article  CAS  Google Scholar 

  39. Li L, Zhang LN, Yu JH, Ge SG, Song X (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114

    Article  CAS  Google Scholar 

  40. Yang ZH, Zhuo Y, Chai YQ, Yuan R (2014) High throughput immunosenor based on multi-label strategy and a novel array electrode. Sci Rep 4:4747

    Article  Google Scholar 

  41. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205

    Article  CAS  Google Scholar 

  42. Shan J, Ma ZF (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979

    Article  CAS  Google Scholar 

  43. Ma A (2014) Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts. Sci Rep 4:4849

    Article  CAS  Google Scholar 

  44. Jia XL, Chen X, Han JM, Ma J, Ma ZF (2014) Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron 53:65–70

    Article  CAS  Google Scholar 

  45. Vuong NM, Kim D, Kim H (2015) Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci Rep 5:11040

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by grants from the National Natural Science Foundation of China (21273153, 21673143), Natural Science Foundation of Beijing Municipality (2172016, 2132008), and the Project of the Construction of Scientific Research Base by the Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanfang Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ma, Z. Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Microchim Acta 184, 3247–3253 (2017). https://doi.org/10.1007/s00604-017-2287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2287-z

Keywords

Navigation