Skip to main content

Advertisement

Log in

An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A battery of logic gates, “YES”, “AND” and “OR”, are constructed using magnetic beads (MBs) modified by DNA which consists of a substrate strand (S) and a signal strand on which the logic operates. Inputs stemming from micro-RNA (which represent three cancer biomarkers) take the place of signal DNA. The released signal strand self-assembles into the hemin-G-quadruplex complex (DNAzyme) that catalyzes a blue-green dye (ABTS+) from the precursor ABTS. This dye (quantified at a wavelength of 414 nm) represents the output signal for the various logic gates. The method allows quantitative detection of microRNA of three kinds of logic gates in the range of 5 nM–500 nM with detection limits of 3.8 nM, 4.9 nM, 5.4 nM. Boolean logic circuitry is also achieved following the principles of multilevel strand displacement. Based on strand displacement and magnetic separation, this work demonstrates the possibility of designing a logic system using micro-RNA in live cell lysate as inputs, and its potential application in DNA computation and cancer diagnosis.

Schematic representation of a battery of logic gates and the Boolean logic circuitry based on strand displacement and magnetic separation responding to multiple microRNA in cancer cell lysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Silva PAD, Gunaratne NHQ, Mccoy CP (1993) A molecular photoionic AND gate based on fluorescent signalling. Nature 364:42–44

    Article  Google Scholar 

  2. Katz E, Privman V (2010) Enzyme-based logic systems for information processing. Chem Soc Rev 39:1835–1837

    Article  CAS  Google Scholar 

  3. Kamiya M, Kobayashi H, Hama Y, Koyama Y, Bernardo M, Nagano T, Choyke LP, Urano Y (2007) An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc 129(13):3918–3929

    Article  CAS  Google Scholar 

  4. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S (2009) Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc 131(8):2766–2767

    Article  CAS  Google Scholar 

  5. Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett Y, Kamiya M, Nagano T, Watanabe T, Hasegawa A, Choyke LP, Kobayashi H (2009) Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Med 15:104–105

    Article  CAS  Google Scholar 

  6. Elbaz J, Wang ZG, Orbach R, Willer I (2009) pH-stimulated concurrent mechanical activation of two DNA "tweezers". A "SET-RESET" logic gate system. Nano 9:4510–4514

    CAS  Google Scholar 

  7. Zavalov O, Bocharova V, Privman V, Katz E (2012) Enzyme-based logic: OR gate with double-sigmoid filter response. J Phys Chem 116:9683–9689

    Article  CAS  Google Scholar 

  8. Yang J, Dong C, Dong YF, Liu S, Pan LQ, Zhang C (2014) Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl Mater Interfaces 6:14486–14492

    Article  CAS  Google Scholar 

  9. Zhang C, Yang J, Xu J (2010) Circular DNA logic gates with strand displacement. Langmuir 26(3):1416–1419

    Article  CAS  Google Scholar 

  10. Zhu JB, Zhang LB, Zhou ZX, Dong SJ, Wang EK (2014) Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal Chem 86:312–316

    Article  CAS  Google Scholar 

  11. Janssen BMG, Rosmalen MV, Beek LV, Merkx M (2015) Antibody activation using DNA-based logic gates. Angew Chem Int Ed 54:2530–2533

    Article  CAS  Google Scholar 

  12. O’Steen MR, Cornett EM, Kolpashchikov DM (2015) Nuclease-containing media for resettable operation of DNA logic gates. Chem Commun 51:1429–1431

    Article  Google Scholar 

  13. Konry T, Walt DR (2009) Intelligent Medical Diagnostics via Molecular Logic. J Am Chem Soc 131(37):13232–13233

    Article  CAS  Google Scholar 

  14. Amir JR, Popkov M, Lerner AR, Barbas CF, Shabat D (2005) Prodrug activation gated by a molecular "OR" logic trigger. Angew Chem Int Ed 44:4378–4381

    Article  CAS  Google Scholar 

  15. Ogawa A, Susaki Y (2013) Multiple-input and visible-output logic gates using signal-converting DNA machines and gold nanoparticle aggregation. Org Biomol Chem 11:3272–3276

    Article  CAS  Google Scholar 

  16. Shapiro E, Gil B (2008) Cell biology. RNA Computing in a Living Cell Science 322:387–388

    CAS  Google Scholar 

  17. Jung C, Ellington AD (2014) Diagnostic applications of nucleic acid circuits. Acc Chem Res 47:1825–1835

    Article  CAS  Google Scholar 

  18. Miyamoto T, Razavi S, DeRose R, Inoue T (2013) Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol 2:72–82

    Article  CAS  Google Scholar 

  19. Guo Y, Yao W, Xie Y, Zhou X, Hu J, Pei R (2016) Logic gates based on G-quadruplexes: principles and sensor applications. Microchim Acta 183(1):21–34

    Article  CAS  Google Scholar 

  20. Hemphill J, Deiters A (2013) DNA computation in mammalian cells: microRNA logic operations. J Am Chem Soc 135:10512–10518

    Article  CAS  Google Scholar 

  21. Wang DF, Fu YM, Yan J, Zhao B, Dai B, Chao J, Liu HJ, He DN, Zhang Y, Fan CH, Song SP (2014) Molecular logic gates on DNA origami nanostructures for microRNA diagnostics. Anal Chem 86:1932–1936

    Article  CAS  Google Scholar 

  22. Chen YQ, Song YY, Wu F, Liu WT, Fu BS, Feng BK, Zhou X (2015) A DNA logic gate based on strand displacement reactions and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs. Chem Commun 51:6980–6983

    Article  CAS  Google Scholar 

  23. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    Article  CAS  Google Scholar 

  24. Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, Song H, Li D, Fang L (2014) MicroRNA-195-5p is a potential diagnostic and therapeutic target for breast cancer. Oncol Rep 31(3):1096–1102

    CAS  Google Scholar 

  25. Hanke M, Hoefig K, Merz K, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakie G (2010) A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 28(6):655–661

    Article  CAS  Google Scholar 

  26. Li T, Wang EK, Dong SJ (2009) Potassium-lead-switched G-Quadruplexes: a new class of DNA logic gates. J Am Chem Soc 131:15082–15083

    Article  CAS  Google Scholar 

  27. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Logic gates and elementary computing by enzymes. J Phys Chem A 110:8548–8553

    Article  CAS  Google Scholar 

  28. Xin L, Zhou C, Yang ZQ, Liu DS (2013) Regulation of an enzyme cascade reaction by a DNA machine. Small 9(18):3088–3091

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21375070), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R39), and the National Basic Research Program of China (2012CB722606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Ding.

Ethics declarations

The authors declare no competing financial interest.

Electronic supplementary material

ESM 1

(DOC 3667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Lv, H., Ma, M. et al. An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates. Microchim Acta 184, 2505–2513 (2017). https://doi.org/10.1007/s00604-017-2248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2248-6

Keywords

Navigation