Skip to main content

Advertisement

Log in

Visual and spectrophotometric determination of cadaverine based on the use of gold nanoparticles capped with cucurbiturils or cyclodextrins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) were capped with cucurbit [6, 7]urils or α- and β-cyclodextrins. The resulting macrocycle-coated AuNPs are shown to enable the visual and spectrophotometric determination of cadaverine. The morphology of the modified AuNPs was characterized by transmission electron microscopy (TEM), which revealed the formation of spherical nanosystems with a narrow size distribution. The macrocycle-coated AuNPs are stable under storage conditions for at least 3 months and well dispersible in water. The cadaverine assay is based on the ability of cucurbiturils and cyclodextrins to recognize diamines. This leads to changes in the UV-vis absorption spectra due to particle aggregation, accompanied by a colour change from red to blue. By using the α-cyclodextrin-coated AuNPs, cadaverine can be quantified by spectrophotometry with a 3.9 μM detection limit.

Schematic presentation of gold nanoparticles capped with cucurbit [6, 7]urils or α- and β-cyclodextrin for visual and spectrophotometric determination of cadaverine. The ability of cucurbiturils and cyclodextrins to recognize diamines leads to changes in the UV-vis absorption spectra due to particle aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu X, Masson E (2011) Formation and stabilization of silver nanoparticles with cucurbit[n]urils (n = 5-8) and cucurbituril-based pseudorotaxanes in aqueous medium. Langmuir 27(6):3051–3058

    Article  CAS  Google Scholar 

  2. Premkumar T, Lee Y, Geckeler KE (2010) Macrocycles as a tool: a facile and one-pot synthesis of silver nanoparticles using cucurbituril designed for cancer therapeutics. Chem Eur J 16(38):11563–11566

    Article  CAS  Google Scholar 

  3. Kaifer A (2004) Chapter 4. Building Blocks for Nanotechnology. New York, Nanoparticles

    Google Scholar 

  4. Montes-García V, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM (2014) Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem Eur J 20(35):10874–10883

    Article  Google Scholar 

  5. Blanco E, Esteve-Adell I, Atienzar P, Casas JA, Hernández P, Quintana C (2016) Cucurbit[7]uril-stabilized gold nanoparticles as catalysts of the nitro compound reduction reaction. RSC Adv 6(89):86309–86315

    Article  CAS  Google Scholar 

  6. Premkumar T, Geckeler KE (2014) Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol. Mater Chem Phys 148(3):772–777

    Article  CAS  Google Scholar 

  7. Menuel S, Léger B, Addad A, Monflier E, Hapiot F (2016) Cyclodextrins as effective additives in AuNP-catalyzed reduction of nitrobenzene derivatives in a ball-mill. Green Chem 18(20):5500–5509

    Article  CAS  Google Scholar 

  8. Barrow SJ, Kasera S, Rowland MJ, Del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115(22):12320–12406

    Article  CAS  Google Scholar 

  9. Mock WL, Shih NY (1988) Organic ligand-receptor interactions between cucurbituril and alkylammonium ions. J Am Chem Soc 110(14):4706–4710

    Article  CAS  Google Scholar 

  10. Lantz AW, Rodriguez MA, Wetterer SM, Armstrong DW (2006) Estimation of association constants between oral malodor components and various native and derivatized cyclodextrins. Anal Chim Acta 557(1–2):184–190

    Article  CAS  Google Scholar 

  11. Önal A, Tekkeli SEK, Önal C (2013) A review of the liquid chromatographic methods for the determination of biogenic amines in foods. Food Chem 138(1):509–515

    Article  Google Scholar 

  12. Karpas Z, Cohen G, Atweh E, Barnard G, Golan M (2012) Recent applications of ion mobility spectrometry in diagnosis of vaginal infections. International Journal of Spectroscopy 2012:6. doi:10.1155/2012/323859

    Article  Google Scholar 

  13. Liu Y, Zhang X, Guo L, Zhang Y, Li Z, Wang Z, Huang M, Yang C, Ye J, Chu Q (2014) Electromembrane extraction of salivary polyamines followed by capillary zone electrophoresis with capacitively coupled contactless conductivity detection. Talanta 128:386–392

    Article  CAS  Google Scholar 

  14. Quinten M (2001) The color of finely dispersed nanoparticles. Appl Phys B Lasers Opt 73(4):317–326

    Article  CAS  Google Scholar 

  15. Patel GM, Rohit JV, Singhal RK, Kailasa SK (2015) Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor. Sens Actuator B-Chem 206:684–691

    Article  CAS  Google Scholar 

  16. Paul IE, Rajeshwari A, Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Colorimetric detection of melamine based on the size effect of AuNPs. Anal Methods 7(4):1453–1462

    Article  CAS  Google Scholar 

  17. Terenteva EA, Arkhipova VV, Apyari VV, Volkov PA, Dmitrienko SG (2017) Simple and rapid method for screening of pyrophosphate using 6,6-ionene-stabilized gold and silver nanoparticles. Sens Actuator B-Chem 241:390–397

    Article  CAS  Google Scholar 

  18. Chen Y, Zhang J, Gao Y, Lee J, Chen H, Yin Y (2015) Visual determination of aliphatic diamines based on host-guest recognition of calix[4]arene derivatives capped gold nanoparticles. Biosens Bioelectron 72:306–312

    Article  CAS  Google Scholar 

  19. Wen D, Liu W, Herrmann AK, Haubold D, Holzschuh M, Simon F, Eychmüller A (2016) Simple and sensitive colorimetric detection of dopamine based on assembly of Cyclodextrin-modified au nanoparticles. Small 12(18):2439–2442

    Article  CAS  Google Scholar 

  20. Hou X, Chen S, Tang J, Xiong Y, Long Y (2014) Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer. Anal Chim Acta 825:57–62

    Article  CAS  Google Scholar 

  21. Wang Y, Zhang P, Mao X, Fu W, Liu C (2016) Seed-mediated growth of bimetallic nanoparticles as an effective strategy for sensitive detection of vitamin C. Sens Actuator B-Chem 231:95–101

    Article  CAS  Google Scholar 

  22. Lee TC, Scherman OA (2012) A facile synthesis of dynamic supramolecular aggregates of cucurbit[n]uril (n=5-8) capped with gold nanoparticles in aqueous media. Chem Eur J 18(6):1628–1633

    Article  CAS  Google Scholar 

  23. Takayama T, Tsutsui H, Shimizu I, Toyama T, Yoshimoto N, Endo Y, Inoue K, Todoroki K, Min JZ, Mizuno H, Toyo'oka T (2016) Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin Chim Acta 452:18–26

    Article  CAS  Google Scholar 

  24. Tábi T, Lohinai Z, Pálfi M, Levine M, Szökó (2008) CE-LIF determination of salivary cadaverine and lysine concentration ratio as an indicator of lysine decarboxylase enzyme activity. Anal Bioanal Chem 391 (2):647–651

  25. Preti R, Bernacchia R, Vinci G (2016) Chemometric evaluation of biogenic amines in commercial fruit juices. Eur Food Res Technol 242(12):2031–2039

    Article  CAS  Google Scholar 

  26. Sun X, Zhou K, Gong Y, Zhang N, Yang M, Qing D, Li Y, Lu J, Li J, Feng C, Li C, Yang Y (2016) Determination of biogenic amines in Sichuan-style spontaneously fermented sausages. Food Anal Methods 9(8):2299–2307

    Article  Google Scholar 

  27. Leonardo S, Campàs M (2016) Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilization supports. Microchim Acta 183(6):1881–1890

    Article  CAS  Google Scholar 

  28. Daniel D, dos Santos VB, Vidal DTR, do Lago CL (2015) Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J Chromatogr A 1416:121–128

  29. Saghatforoush L, Hasanzadeh M, Shadjou N (2014) β-Cyclodextrin/graphene oxide grafted sulfonic acid: application for electro-oxidation and determination of cadaverine in fish samples. J Electroanal Chem 714-715:79–84

    Article  CAS  Google Scholar 

  30. Shen NY, Zheng SY, Wang XQ (2016) Determination of biogenic amines in Pu-erh tea with Precolumn derivatization by high-performance liquid chromatography. Food Anal Method. doi:10.1007/s12161-016-0724-y:1-9

    Google Scholar 

  31. Galarce O, Henráquez-Aedo K, Peterssen D, Peña-Farfal C, Aranda M (2016) A selective chromatographic method to determine the dynamic of biogenic amines during brewing process. Food Anal Method 9(12):3385–3395

    Article  Google Scholar 

  32. Pinto L, Díaz Nieto CH, Zón MA, Fernández H, de Araujo MCU (2016) Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: quantitation of five biogenic amines in fish. Anal Chim Acta 902:59–69

    Article  CAS  Google Scholar 

  33. Aigner M, Telsnig D, Kalcher K, Teubl C, Macheroux P, Wallner S, Edmondson D, Ortner A (2015) Amperometric biosensor for total monoamines using a glassy carbon paste electrode modified with human monoamine oxidase B and manganese dioxide particles. Microchim Acta 182(5–6):925–931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Comunidad Autónoma de Madrid (S2013/MIT-3029, NANOAVANSENS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Quintana.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pozo, M., Casero, E. & Quintana, C. Visual and spectrophotometric determination of cadaverine based on the use of gold nanoparticles capped with cucurbiturils or cyclodextrins. Microchim Acta 184, 2107–2114 (2017). https://doi.org/10.1007/s00604-017-2226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2226-z

Keywords

Navigation