Skip to main content
Log in

Preparation of linear polyacrylamide coating and strong cationic exchange hybrid monolith in a single capillary, and its application as an automated platform for bottom-up proteomics by capillary electrophoresis-mass spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A linear polyacrylamide (LPA) coating and a sulfonate-silica hybrid strong cation exchange (SCX) monolith were prepared sequentially in a single fused silica capillary. The SCX-LPA capillary was used for sample preconcentration using solid-phase extraction (SPE) followed by capillary zone electrophoresis (CZE) separation and mass spectrometry detection. Samples were prepared in 1 M acetic acid, loaded by pressure onto the SCX SPE monolith, and eluted using 200 mM ammonium bicarbonate (pH 8). The background electrolyte for CZE was 1 M acetic acid. This combination of elution buffer and background electrolyte results in formation of a dynamic pH junction, which further improves the preconcentration performance. All experiments were performed using a CZE autosampler and an electrokinetically pumped nanospray interface. By loading 50 ng of Xenopus laevis eggs protein digest, 330 protein groups and 872 peptides were identified. The system was also applied to the analysis of 11 μL of a 10−4 mg⋅mL−1 (1.1 ng) bovine serum albumin tryptic digest; 12 peptides were identified and the protein coverage was 25%. Finally, by loading 5.5 μL of a 10−3 mg⋅mL−1 (5.5 ng) E. coli digest, 145 protein groups and 365 peptides were identified.

A linear polyacrylamide coating and a sulfonate-silica hybrid cation exchange monolith were prepared sequentially in a single fused silica capillary and coupled to the capillary zone electrophoresis-mass spectrometry for automated online sample preconcentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robledo VR, Smyth WF (2014) Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 35(16):2292–2308. doi:10.1002/elps.201300561

    Article  CAS  Google Scholar 

  2. Stepanova S, Kasicka V (2016) Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 39(1):198–211. doi:10.1002/jssc.201500973

    Article  CAS  Google Scholar 

  3. Stepanova S, Kasicka V (2016) Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 933:23–42. doi:10.1016/j.aca.2016.06.006

    Article  CAS  Google Scholar 

  4. Heemskerk AAM, Deelder AM, Mayboroda OA (2016) CE-ESI-MS for bottom-up proteomics: advances in separation, interfacing and applications. Mass Spectrom Rev 35(2):259–271. doi:10.1002/mas.21432

    Article  CAS  Google Scholar 

  5. Mesbah K, Mai TD, Jensen TG, Sola L, Chiari M, Kutter JP, Taverna M (2016) A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis. Microchim Acta 183(7):2111–2121. doi:10.1007/s00604-016-1825-4

    Article  CAS  Google Scholar 

  6. Quirino JP, Terabe S (1999) Sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow. J Chromatogr A 850(1–2):339–344. doi:10.1016/S0021-9673(99)00204-6

    Article  CAS  Google Scholar 

  7. Chien RL (2003) Sample stacking revisited: a personal perspective. Electrophoresis 24(3):486–497. doi:10.1002/elps.200390057

    Article  CAS  Google Scholar 

  8. Britz-McKibbin P, Otsuka K, Terabe S (2002) On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 74(15):3736–3743. doi:10.1021/ac025701o

    Article  CAS  Google Scholar 

  9. Zhu GJ, Sun LL, Yan XJ, Dovichi NJ (2014) Bottom-up proteomics of Escherichia coli using dynamic pH junction preconcentration and capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry. Anal Chem 86(13):6331–6336. doi:10.1021/ac5004486

    Article  CAS  Google Scholar 

  10. Kazarian AA, Hilder EF, Breadmore MC (2011) Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis. J Sep Sci 34(20):2800–2821. doi:10.1002/jssc.201100414

    Article  CAS  Google Scholar 

  11. Ye H, Xia S, Lin W, Yu L, Xu X, Zheng C, Liu X, Chen G (2010) CE-ESI-MS coupled with dynamic pH junction online concentration for analysis of peptides in human urine samples. Electrophoresis 31(20):3400–3406. doi:10.1002/elps.201000194

    Article  CAS  Google Scholar 

  12. Tomlinson AJ, Benson LM, Guzman NA, Naylor S (1995) Preliminary investigations of preconcentration-capillary electrophoresis-mass spectrometry. J Chromatogr A 669(1):67–73. doi:10.1016/0378-4347(95)00127-5

    Article  CAS  Google Scholar 

  13. Figeys D, Ducret A, Yates JR, Aebersold R (1996) Protein identification by solid phase microextraction-capillary zone electrophoresis-microelectrospray-tandem mass spectrometry. Nat Biotechnol 14(11):1579–1583. doi:10.1038/nbt1196-1579

    Article  CAS  Google Scholar 

  14. Wang YJ, Fonslow BR, Wong CCL, Nakorchevsky A, Yates JR (2012) Improving the comprehensiveness and sensitivity of sheathless capillary electrophoresis-tandem mass spectrometry for proteomic analysis. Anal Chem 84(20):8505–8513. doi:10.1021/ac301091m

    Article  CAS  Google Scholar 

  15. Zhang ZB, Sun LL, Zhu GJ, Yan XJ, Dovichi NJ (2015) Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry. Talanta 138:117–122. doi:10.1016/j.talanta.2015.01.040

    Article  CAS  Google Scholar 

  16. Zhang ZB, Yan XJ, Sun LL, Zhu GJ, Dovichi NJ (2015) Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes. Anal Chem 87(8):4572–4577. doi:10.1021/acs.analchem.5b00789

    Article  CAS  Google Scholar 

  17. Benavente F, Vescina MC, Hernández E, Sanz-Nebot V, Barbosa J, Guzman NA (2007) Lowering the concentration limits of detection by on-line solid-phase extraction-capillary electrophoresis-electrospray mass spectrometry. J Chromatogr A 1140(1–2):205–212. doi:10.1016/j.chroma.2006.11.092

    Article  CAS  Google Scholar 

  18. Breadmore MC, Thabano JRE, Dawod M, Kazarian AA, Quirino JP, Guijt RM (2009) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006-2008). Electrophoresis 30(1):230–248. doi:10.1002/elps.200800435

    Article  CAS  Google Scholar 

  19. Ramautar R, Somsen GW, de Jong GJ (2016) Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015. Electrophoresis 37(1):35–44. doi:10.1002/elps.201500401

    Article  CAS  Google Scholar 

  20. Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP (2015) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 36(1):36–61. doi:10.1002/elps.201400420

    Article  CAS  Google Scholar 

  21. Puig P, Borrull F, Calull M, Aguilar C (2007) Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE-CE). TrAC Trends Anal Chem 26(7):664–678. doi:10.1016/j.trac.2007.05.010

    Article  CAS  Google Scholar 

  22. Zhu GJ, Sun LL, Dovichi NJ (2016) Dynamic pH junction preconcentration in capillary electrophoresis-electrospray ionization-mass spectrometry for proteomics analysis. Analyst 141(18):5216–5220. doi:10.1039/c6an01140c

    Article  CAS  Google Scholar 

  23. Zhang ZB, Wang FJ, Xu B, Qin HQ, Ye ML, Zou HF (2012) Preparation of capillary hybrid monolithic column with sulfonate strong cation exchanger for proteome analysis. J Chromatogr A 1256:136–143. doi:10.1016/j.chroma.2012.07.071

    Article  CAS  Google Scholar 

  24. Zhu GJ, Sun LL, Dovichi NJ (2016) Thermally-initiated free radical polymerization for reproducible production of stable linear polyacrylamide coated capillaries, and their application to proteomic analysis using capillary zone electrophoresis-mass spectrometry. Talanta 146:839–843. doi:10.1016/j.talanta.2015.06.003

    Article  CAS  Google Scholar 

  25. Wu RA, Zou HF, Fu HJ, Jin WH, Ye ML (2002) Separation of peptides on mixed mode of reversed-phase and ion-exchange capillary electrochromatography with a monolithic column. Electrophoresis 23(9):1239–1245. doi:10.1002/1522-2683(200205)23:9<1239::AID-ELPS1239>3.0.CO;2-X

    Article  CAS  Google Scholar 

  26. Wojcik R, Dada OO, Sadilek M, Dovichi NJ (2010) Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun Mass Spectrom 24:2554–2560. doi:10.1002/rcm.4672

    Article  CAS  Google Scholar 

  27. Sun LL, Zhu GJ, Zhao YM, Yan XJ, Mou S, Dovichi NJ (2013) Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew Chem Int Ed Eng 52(51):13661–13664. doi:10.1002/anie.201308139

    Article  CAS  Google Scholar 

  28. Sun LL, Zhu GJ, Zhang ZB, Mou S, Dovichi NJ (2015) Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J Proteome Res 14(5):2312–2321. doi:10.1021/acs.jproteome.5b00100

    Article  CAS  Google Scholar 

  29. Zhang ZB, Sun LL, Zhu GJ, Cox OF, Huber PW, Dovichi NJ (2016) Nearly 1000 protein identifications from 50 ng of Xenopus laevis zygote homogenate using online sample preparation on a strong cation exchange monolith based microreactor coupled with capillary zone electrophoresis. Anal Chem 88(1):877–882. doi:10.1021/acs.analchem.5b03496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. William Boggess in the Notre Dame Mass Spectrometry and Proteomics Facility for his help with this project. We also thank Professor Paul Huber of the University of Notre Dame for providing the Xenopus eggs used in this experiment.

This work was funded by the National Institutes of Health (Grants R01GM096767 and R01HD084399). Elizabeth H. Peuchen acknowledges support from a National Science Foundation Graduate Research Fellowship (Grant No. DGE-1313583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman J. Dovichi.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Associated content

Additional information as noted in text. This material is available free of charge via the Internet.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(XLSX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhu, G., Peuchen, E.H. et al. Preparation of linear polyacrylamide coating and strong cationic exchange hybrid monolith in a single capillary, and its application as an automated platform for bottom-up proteomics by capillary electrophoresis-mass spectrometry. Microchim Acta 184, 921–925 (2017). https://doi.org/10.1007/s00604-017-2084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2084-8

Keywords

Navigation