Skip to main content
Log in

Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the design of an ascorbate interference-free lactate biosensor that takes advantage of the redox properties of ceria (CeO2) nanoparticles that make this material suitable to be used in electrochemical biosensors operating in low oxygen conditions. First, ceria-free lactate biosensors were fabricated using a positively charged polymer, polyethylenimine (PEI), for the immobilization of lactate oxidase (LOx) and ascorbate oxidase (AOx) on Pt electrodes. When AOx was not immobilized on the electrode, the sensor was interfered by ascorbate. Immobilization of AOx on the electrode surface, however, resulted in a loss of interference by ascorbate due to the depletion of oxygen in the enzyme layer. To address this challenge, we exploited the oxygen storage capacity of ceria nanoparticles. Their introduction into the enzyme layer enabled the fabrication of lactate biosensors that are not interfered by ascorbate and yet can be operated under low oxygen conditions. The Pt/CeO2–3(PEI/LOx)-3(PEI/AOx) biosensors, if operated at a working voltage of 0.6 V (vs. Ag/AgCl) display a wide linear range (20 μM to 1 mM), a low detection limit (0.3 μM) and a sensitivity of 172.9 ± 11.7 μA∙mM−1∙cm−2. Evidently, the layer-by-layer configuration eliminates interferences by common species such as ascorbic acid, uric acid, and glucose. The practical applicability of the sensors was evaluated by detecting lactate in human serum.

Ascorbate interference-free amperometric lactate biosensors were constructed using layer by layer deposition of ceria nanoparticles, polyethylenimine, lactate oxidase, and ascorbate oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao YG, Yan XQ, Kang Z, Fang XF, Zheng X, Zhao LQ, Du HW, Zhang Y (2014) Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. J Nanoparticle Res 16(5):9. doi:10.1007/s11051-014-2398-y

    Google Scholar 

  2. Monosik R, Stredansky M, Greif G, Sturdik E (2012) A rapid method for determination of L-lactic acid in real samples by amperometric biosensor utilizing nanocomposite. Food Control 23(1):238–244. doi:10.1016/j.foodcont.2011.07.021

    Article  CAS  Google Scholar 

  3. Sartain FK, Yang XP, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78(16):5664–5670. doi:10.1021/ac060416g

    Article  CAS  Google Scholar 

  4. Gomes SP, Odlozilikova M, Almeida MG, Araujo AN, Couto C, Montenegro M (2007) Application of lactate amperometric sol-gel biosensor to sequential injection determination of L-lactate. J Pharm Biomed Anal 43(4):1376–1381. doi:10.1016/j.jpba.2006.11.027

    Article  CAS  Google Scholar 

  5. Rassaei L, Olthuis W, Tsujimura S, Sudholter EJR, van den Berg A (2014) Lactate biosensors: current status and outlook. Anal Bioanal Chem 406(1):123–137. doi:10.1007/s00216-013-7307-1

    Article  CAS  Google Scholar 

  6. Nikolaus N, Strehlitz B (2008) Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 160(1–2):15–55. doi:10.1007/s00604-007-0834-8

    Article  CAS  Google Scholar 

  7. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008-2013). Microchim Acta 181(9–10):865–891. doi:10.1007/s00604-014-1181-1

    Article  CAS  Google Scholar 

  8. Azzouzi S, Rotariu L, Benito AM, Maser WK, Ben Ali M, Bala C (2015) A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of L-lactate tumor biomarker. Biosens Bioelectron 69:280–286. doi:10.1016/j.bios.2015.03.012

    Article  CAS  Google Scholar 

  9. Bosquet L, Leger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32(11):675–700. doi:10.2165/00007256-200232110-00002

    Article  Google Scholar 

  10. Rogatzki MJ, Wright GA, Mikat RP, Brice AG (2014) Blood ammonium and Lactate accumulation response to different training protocols using the parallel squat exercise. J Strength Cond Res 28(4):1113–1118. doi:10.1519/Jsc.0b013e3182a1f84e

    Article  Google Scholar 

  11. Gleeson M, Blannin AK, Walsh NP, Field CNE, Pritchard JC (1998) Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. Eur J Appl Physiol O 77(3):292–295. doi:10.1007/s004210050336

    Article  CAS  Google Scholar 

  12. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JH (2010) Association of blood lactate with type 2 diabetes: the atherosclerosis risk in communities carotid MRI Study. Int J Epidemiol 39(6):1647–1655. doi:10.1093/Ije/Dyq126

    Article  Google Scholar 

  13. Crawford S, Hoogeveen R, Brancati F, Astor B, Ballantyne C, Schmidt MI, Young JH (2008) Association Of Blood Lactate with type 2 diabetes: the atherosclerosis risk in communities carotid MRI Study. Obesity 16:S80–S80

    Article  Google Scholar 

  14. Haneda T, Kato J, Yamashita H, Tobise K, Onodera S, Ichihara K, Abiko Y (1986) Release of adenosine and Lactate from the heart during atrial-pacing in patients with ischemic-heart-disease. Jpn Circ J 50(6):464–464

    Google Scholar 

  15. Weiss J, Barnwell AJ, Allen F, Vigneron DB, Barkovich AJ (2000) Increased brain lactate levels following neonatal seizures in term infants with perinatal asphyxia. J Investig Med 48(1):8A–8A

    Google Scholar 

  16. Zanini VIP, Tulli F, Martino DM, de Mishima BL, Borsarelli CD (2013) Improvement of the amperometric response to L-lactate by using a cationic bioinspired thymine polycation in a bioelectrode with immobilized lactate oxidase. Sensors Actuators B Chem 181:251–258. doi:10.1016/j.snb.2013.01.061

    Article  Google Scholar 

  17. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T (1998) Layer-by-layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Anal Chem 70(4):811–817. doi:10.1021/ac970536b

    Article  CAS  Google Scholar 

  18. Uzunoglu A, Scherbarth AD, Stanciu L (2015) Bimetallic PdCu/SPCE Non-Enzymatic Hydrogen Peroxide Sensors 220:968–976

    CAS  Google Scholar 

  19. Nagy G, Rice ME, Adams RN (1982) A new type of enzyme electrode - the ascorbic-acid eliminator electrode. Life Sci 31(23):2611–2616. doi:10.1016/0024-3205(82)90736-6

    Article  CAS  Google Scholar 

  20. Sasso SV, Pierce RJ, Walla R, Yacynych AM (1990) Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors. Anal Chem 62(11):1111–1117. doi:10.1021/ac00210a004

    Article  CAS  Google Scholar 

  21. Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Biosensors based On Prussian Blue Modified Carbon Fibers Electrodes for Monitoring Lactate in The Extracellular Space of Brain Tissue. Int J Electrochem Sci 7(7):5910–5926

    CAS  Google Scholar 

  22. Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids Surf B: Biointerfaces 92:180–189. doi:10.1016/j.colsurfb.2011.11.047

    Article  CAS  Google Scholar 

  23. Kulys J, Wang LZ, Maksimoviene A (1993) L-lactate oxidase electrode based on methylene green and carbon paste. Anal Chim Acta 274(1):53–58. doi:10.1016/0003-2670(93)80604-j

    Article  CAS  Google Scholar 

  24. Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon-nanotube. Sensors Actuators B Chem 124(1):269–276. doi:10.1016/j.snb.2006.12.042

    Article  CAS  Google Scholar 

  25. Parra A, Casero E, Vazquez L, Jin J, Pariente F, Lorenzo E (2006) Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase. Langmuir 22(12):5443–5450. doi:10.1021/la060187g

    Article  CAS  Google Scholar 

  26. Njagi J, Ispas C, Andreescu S (2008) Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments. Anal Chem 80(19):7266–7274. doi:10.1021/ac800808a

    Article  CAS  Google Scholar 

  27. Willander M, Khun K, Ibupoto ZH (2014) ZnO based potentiometric and amperometric nanosensors. J Nanosci Nanotechnol 14(9):6497–6508. doi:10.1166/jnn.2014.9349

    Article  CAS  Google Scholar 

  28. Chaturvedi P, Vanegas DC, Taguchi M, Burrs SL, Sharma P, McLamore ES (2014) A nanoceria-platinum-graphene nanocomposite for electrochemical biosensing. Biosens Bioelectron 58:179–185. doi:10.1016/j.bios.2014.02.021

    Article  CAS  Google Scholar 

  29. Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181(13–14):1471–1484. doi:10.1007/s00604-014-1203-z

    Article  CAS  Google Scholar 

  30. Gao P, Liu DW (2015) Petal-like CuO nanostructures prepared by a simple wet chemical method, and their application to non-enzymatic amperometric determination of hydrogen peroxide. Microchim Acta 182(7–8):1231–1239. doi:10.1007/s00604-015-1476-x

    Article  CAS  Google Scholar 

  31. Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182(11–12):2001–2007. doi:10.1007/s00604-015-1521-9

    Article  CAS  Google Scholar 

  32. Ozel RE, Ispas C, Ganesana M, Leiter JC, Andreescu S (2014) Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments. Biosens Bioelectron 52:397–402. doi:10.1016/j.bios.2013.08.054

    Article  CAS  Google Scholar 

  33. Uzunoglu A, Zhang H, Andreescu S, Stanciu S (2015) CeO2–MOx (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity vol 50. Springer, Journal of Materials Science. doi:10.1007/s10853-015-8939-7

    Google Scholar 

  34. Rodriguez MC, Rivas GA (2004) Assembly of glucose oxidase and different polyelectrolytes by means of electrostatic layer-by-layer adsorption on thiolated gold surface. Electroanalysis 16(20):1717–1722. doi:10.1002/elan.200303023

    Article  CAS  Google Scholar 

  35. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48(13):2308–2312. doi:10.1002/anie.200805279

    Article  CAS  Google Scholar 

  36. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83(7):2547–2553. doi:10.1021/ac102826k

    Article  CAS  Google Scholar 

  37. Shen C, Su J, Li X, Luo J, Yang M (2015) Electrochemical sensing platform based on Pd-Au bimetallic cluster for non-enzymatic detection of glucose. Sensors Actuators B Chem 209:695–700. doi:10.1016/j.snb.2014.12.044

    Article  CAS  Google Scholar 

  38. Briones M, Casero E, Petit-Dominguez MD, Ruiz MA, Parra-Alframba AM, Pariente F, Lorenzo E, Vazquez L (2015) Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens Bioelectron 68:521–528

  39. Gamero M, Pariente F, Lorenzo E, Alonso C (2010) Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens Bioelectron 25(9):2038–2044. doi:10.1016/j.bios.2010.01.032

    Article  CAS  Google Scholar 

  40. Zhao Y, Fang X, Gu Y, Yan X, Kang Z, Zheng X, Lin P, Zhao L, Zhang Y (2015) Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced L-lactate sensing. Colloids Surf B: Biointerfaces 126:476–480

    Article  CAS  Google Scholar 

  41. Zhao Y, Yan X, Kang Z, Fang X, Zheng X, Zhao L, Du H, Zhang Y (2014) Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection. J Nanoparticle Res 16:2398

    Article  Google Scholar 

  42. Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem 661(1):8–12. doi:10.1016/j.jelechem.2011.06.024

    Article  CAS  Google Scholar 

  43. Ibupoto ZH, Shah S, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with Lactate oxidase. Sensors 12(3):2456–2466. doi:10.3390/s120302456

    Article  CAS  Google Scholar 

  44. Perez S, Sanchez S, Fabregas E (2012) Enzymatic strategies to construct L-lactate biosensors based on polysulfone/carbon nanotubes membranes. Electroanalysis 24(4):967–974. doi:10.1002/elan.201100628

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like acknowledge financial support by NSF under Award No. CMMI 1200066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Uzunoglu.

Electronic supplementary material

ESM 1

(DOC 1420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzunoglu, A., Ramirez, I., Andreasen, E. et al. Layer by layer construction of ascorbate interference-free amperometric lactate biosensors with lactate oxidase, ascorbate oxidase, and ceria nanoparticles. Microchim Acta 183, 1667–1675 (2016). https://doi.org/10.1007/s00604-016-1796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1796-5

Keywords

Navigation