Skip to main content
Log in

Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An agent-free microwave-assisted method was developed for the preparation of a reduced graphene oxide/Fe3O4@gold nanocomposite. This material was used as an adsorbent for magnetic solid-phase extraction of organochlorine pesticides (OCPs) from water samples. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The effects of sample volume, amount of sorbent, eluent volume, extraction and desorption time, and the effect of salt on the extraction efficiency were optimized. The linear response range of GC analysis extends from 0.05 to 500 μg L−1 of OCPs, the limits of detection range from 0.4 to 4.1 ng L−1, relative standard deviations from 1.7 to 7.3 %, and recoveries (from spiked seawater samples) from 69 to 114 %.

Oxygen functional groups in graphene oxide can bind to magnetic Fe3O4 nanoparticles through chemical bonds, and a magnetic reduced graphene oxide (RGO) is thus obtained. The interaction between magnetic RGO and HAuCl4 led to dispersion of the gold nanoparticles on the substrate. π-interaction of RGO and AuNPs with aromatic rings made this sorbent effective for extraction of organochlorine pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mehdinia A, Khani H, Mozaffari S (2014) Fibers coated with a graphene-polyaniline nanocomposite for the headspace solid-phase microextraction of organochlorine pesticides from seawater samples. Microchim Acta 181:89–95. doi:10.1007/s00604-013-1071-y

    Article  CAS  Google Scholar 

  2. Jiang X, Huang K, Deng D, Xia H, Hou X, Zheng C (2012) Nanomaterials in analytical atomic spectrometry. TrAC Trends Anal Chem 39:38–59. doi:10.1016/j.trac.2012.06.002

    Article  CAS  Google Scholar 

  3. Luo YB, Shi ZG, GAO QA, Feng YQ (2011) Magnetic retrieval of graphene: extraction of sulfonamide antibiotics from environmental water samples. J. Chromatogr. A 1218:1353–1358. doi:10.1016/j.chroma.2011.01.022

    Article  CAS  Google Scholar 

  4. Han Q, Wang ZH, Xia JF, Chen S, Zhang XQ, Ding MY (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395. doi:10.1016/j.talanta.2012.09.046

    Article  CAS  Google Scholar 

  5. Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY (2014) Magnetic solid phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J. Chromatogr. A 1347:30–38. doi:10.1016/j.chroma.2014.04.073

    Article  CAS  Google Scholar 

  6. Wu J, Xiao D, Zhao H, He H, Peng J, Wang C, Zhang C, He J (2015) A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples. Microchim Acta 182:2299–2306. doi:10.1007/s00604-015-1575-8

    Article  CAS  Google Scholar 

  7. Liu Q, Shi J, Wang T, Guo F, Liu L, Jiang G (2012) Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction. J Chromatogr A 1257:1–8. doi:10.1016/j.chroma.2012.08.028

    Article  CAS  Google Scholar 

  8. Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395. doi:10.1016/j.talanta.2012.09.046

    Article  CAS  Google Scholar 

  9. Junyong C, Yongmei H, Yan L, JiaJia G (2013) Magnetic graphene oxides highly effective adsorbents for rapid removal of a cationic dye rhodamine B from aqueous solutions. RSC adv 3:7254–7258. doi:10.1039/c3ra22599b

    Article  Google Scholar 

  10. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  11. Liu FK (2009) Analysis and applications of nanoparticles in the separation sciences: a case of gold nanoparticles. J Chromatogr A 1216:9034–9047. doi:10.1016/j.chroma.2009.07.026

    Article  CAS  Google Scholar 

  12. Cho SJ, Kauzlarich SM, Olamit J, Liu K, Grandjean F, Rebbouh L, Long GJ (2004) Characterization and magnetic properties of core/shell structured Fe/Au nanoparticles J. Appl Phys 95:6804–6806. doi:10.1063/1.1676033

    Article  CAS  Google Scholar 

  13. Stoeva SI, Huo F, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363. doi:10.1021/ja055056d

    Article  CAS  Google Scholar 

  14. Deng X, Lin K, Chen X, Guo Q, Yao P (2013) Preparation of magnetic Fe3O4/Au composites for extraction of benzo[a]pyrene from aqueous solution. Chem Eng J 225:656–663. doi:10.1016/j.cej.2013.04.004

    Article  CAS  Google Scholar 

  15. Stoeva SI, Huo FW, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363. doi:10.1021/ja055056d

    Article  CAS  Google Scholar 

  16. Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298. doi:10.1021/nn700189h

    Article  CAS  Google Scholar 

  17. Xuan S, Wang Y, Yu JC, Leung KC (2009) Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites. Langmuir 25:11835–11843. doi:10.1021/la901462t

    Article  CAS  Google Scholar 

  18. Zhao X, Cai Y, Wang T, Shi Y, Jiang G (2008) Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Anal Chem 80:9091–9096. doi:10.1021/ac801581m

    Article  CAS  Google Scholar 

  19. Mehdinia A, Khojasteh E, Baradaran Kayyal T, Jabbari A (2014) Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. J. Chromatogr. A 1364:20–27. doi:10.1016/j.chroma.2014.08.063

    Article  CAS  Google Scholar 

  20. Ulman A (1991) An introduction to ultrathin organic films. Academic Press, Boston

    Google Scholar 

  21. Cortada C, Vidal L, Pastor R, Santiago N, Canals A (2009) Determination of organochlorine pesticides in water samples by dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. Anal Chim Acta 649:218–221. doi:10.1016/j.aca.2009.07.041

    Article  CAS  Google Scholar 

  22. Thomann RV (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ Sci Technol 23:699–707. doi:10.1021/es00064a008

    Article  CAS  Google Scholar 

  23. Nakata H, Kawazoe M, Arizono K, Abe S, Kitano T, Shimada H, Li W, Ding X (2002) Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary exposure. Arch Environ Contam Toxicol 43:473–480. doi:10.1007/s00244-002-1254-8

    Article  CAS  Google Scholar 

  24. Vallack HW, Bakker DJ, Brandt I, Lundén EB, Brouwer A, Bull KR, Gough C, Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D, McCutcheon P, Mocarelli P, Taalman RDF (1998) Controlling persistent organic pollutants–what next? Environ Toxicol Pharmacol 6:143–175. doi:10.1016/S1382-6689(98)00036-2

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  26. Kassaee MZ, Motamedi E, Majdi M (2011) Magnetic Fe3O4-graphene oxide/polystyrene: fabrication and characterization of a promising nanocomposite. Chem Eng J 172:540–549. doi:10.1016/j.cej.2011.05.093

    Article  CAS  Google Scholar 

  27. Song J, Xu L, Xing R, Li Q, Zhou C, Liu D, Song H (2014) Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Sci Report 4:7515–7521. doi:10.1038/srep07515

    Article  CAS  Google Scholar 

  28. Liu H, Su X, Duan C, Dong X, Zhou S, Zhu Z (2014) Microwave-assisted hydrothermal synthesis of Au NPs–graphene composites for H2O2 detection. J Electroanal Chem 731:36–42. doi:10.1016/j.jelechem.2014.08.013

    Article  CAS  Google Scholar 

  29. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites:one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562. doi:10.1007/s12274-011-0111-3

    Article  CAS  Google Scholar 

  30. Verdonck L, Hoste S, Roelandt FF, Van der Kelen GP (1982) Normal coordinate analysis of α-FeOOH - a molecular approach. J Mol Struct 79:273–279. doi:10.1016/0022-2860(82)85065-5

    Article  CAS  Google Scholar 

  31. Ratola N, Santos L, Herbert P, Alves A (2006) Uncertainty associated to the analysis of organochlorine pesticides in water by solid-phase microextraction/gas chromatography–electron capture detection—evaluation using two different approaches. Anal Chim Acta 573–574:202–208. doi:10.1016/j.aca.2006.03.065

    Article  Google Scholar 

  32. Zambonin CG, Aresta A, Nilsson T (2002) Analysis of organochlorine pesticides by solid-phase microextraction followed by gas chromatography-mass spectrometry. Int J Environ Anal Chem 82:651–657. doi:10.1080/0306731021000075375

    Article  CAS  Google Scholar 

  33. Leong MI, Huang SD (2008) Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. J Chromatogr A 1211:8–12. doi:10.1016/j.chroma.2008.09.111

    Article  CAS  Google Scholar 

  34. Jiang X, Wu M, Wu W, Cheng J, Zhou H, Cheng M (2014) A novel dispersive micro-solid phase extraction method combined with gas chromatography for analysis of organochlorine pesticides in aqueous samples. Anal Methods 6:9712–9717. doi:10.1039/C4AY02302A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehdinia.

Electronic Supplementary Material

ESM 1

(DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdinia, A., Rouhani, S. & Mozaffari, S. Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides. Microchim Acta 183, 1177–1185 (2016). https://doi.org/10.1007/s00604-015-1691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1691-5

Keywords

Navigation