Skip to main content
Log in

Quantum dot-modified paper-based assay for glucose screening

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a simple optical assay for glucose. It is based on the use of paper spots loaded with colloidal CdSe/ZnS quantum dots (Q-dots) and the enzyme glucose oxidase (GOx). Circular paper sheets were uniformly loaded with Q-dots and then displayed strong fluorescence under a UV lamp (365 nm exCitation). The action of GOx causes the production of H2O2 which, after a typical exposure time of 20 min, causes fluorescence intensity to be quenched. To obtain a reading, the paper sheets were photographed under 365 nm excitation using a digital camera. Several parameters, including the amount of Q-dots, sample pH, and amount of GOx were optimized to maximize the response to glucose. The paper-based assay showed a sigmoidal-shaped response with respect to the glucose concentration in the 5–200 mg·dL−1 range (limit of detection of 5 μg·dL−1), demonstrating their potential use for biomedical applications.

A simple and inexpensive paper-based assay for glucose is reported. Following the optimzation of the amount of quantum dots, sample pH value, and amount of glucose oxidase (GOx), a sigmoidal response function was obtained that covers the 5–200 mg dL−1 glucose concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duong HD, Rhee JI (2007) Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose. Talanta 73(5):899–905

    Article  CAS  Google Scholar 

  2. Durán GM, Contento AM, Ríos Á (2013) Use of Cdse/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples. Anal Chim Acta 801 (0): p. 84–90

  3. Durán GM, Plata MR, Zougagh M, Contento AM, Ríos Á (2014) Microwave-assisted synthesis of water soluble thiol capped CdSe/ZnS quantum dots and its interaction with sulfonylurea herbicides. J Colloid Interf Sci 428 (0): p. 235–241

  4. Durán GM, Contento AM, Ríos Á (2015) β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples. Talanta 131 (0): p. 286–291

  5. Bhakta SA, Borba R, Taba Jr M, Garcia CD, Carrilho E (2014) Determination of nitrite in saliva using microfluidic paper-based analytical devices. Anal Chim Acta 809 (0): p. 117–122

  6. de Tarso GP, Garcia Cardoso TM, Garcia CD, Carrilho E, Tomazelli Coltro WK (2014) A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances 4(71):37637–37644

    Article  Google Scholar 

  7. Evans E, Gabriel EFM, Coltro WKT, Garcia CD (2014) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139(9):2127–2132

    Article  CAS  Google Scholar 

  8. Cheng C-M, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed 49(28):4771–4774

    Article  CAS  Google Scholar 

  9. Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42(2):450–457

    Article  CAS  Google Scholar 

  10. Evans E, Moreira Gabriel EF, Benavidez TE, Tomazelli Coltro WK, Garcia CD (2014) Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139(21):5560–5567

    Article  CAS  Google Scholar 

  11. Petryayeva E, Algar WR (2013) Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal Chem 85(18):8817–8825

    Article  CAS  Google Scholar 

  12. Noor MO, Shahmuradyan A, Krull UJ (2013) Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 85(3):1860–1867

    Article  CAS  Google Scholar 

  13. Noor MO, Krull UJ (2014) Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86(20):10331–10339

    Article  CAS  Google Scholar 

  14. Yuan J, Gaponik N, Eychmüller A (2012) Application of polymer quantum dot-enzyme hybrids in the biosensor development and test paper fabrication. Anal Chem 84(11):5047–5052

    Article  CAS  Google Scholar 

  15. Wu M, Algar WR (2015) Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots. Appl Mat Interfaces 7(4):2535–2545

    Article  CAS  Google Scholar 

  16. Algar WR, Malonoski A, Deschamps JR, Blanco-Canosa JB, Susumu K, Stewart MH, Johnson BJ, Dawson PE, Medintz IL (2012) Proteolytic activity at quantum Dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett 12(7):3793–3802

    Article  CAS  Google Scholar 

  17. Santhiago M, Wydallis JB, Kubota LT, Henry CS (2013) Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem 85(10):5233–5239

    Article  CAS  Google Scholar 

  18. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  CAS  Google Scholar 

  19. Song Y, Gyarmati P, Araújo AC, Lundeberg J, Brumer H, Ståhl PL (2014) Visual detection of DNA on paper chips. Anal Chem 86(3):1575–1582

    Article  CAS  Google Scholar 

  20. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57(1):675–709

    Article  CAS  Google Scholar 

  21. Bhakta SA, Benavidez TE, Garcia CD (2014) Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine). J Colloid Interface Sci 430:351–356

    Article  CAS  Google Scholar 

  22. Koschinsky T, Heinemann L (2001) Sensors for glucose monitoring: technical and clinical aspects. Diabetes Metab Res Rev 17(2):113–123

    Article  CAS  Google Scholar 

  23. Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53(5):1309–1316

    Article  CAS  Google Scholar 

  24. Gabriel EFM, Coltro WKT, Garcia CD (2014) Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 35(16):2325–2332

    Article  CAS  Google Scholar 

  25. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  CAS  Google Scholar 

  26. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491

    Article  CAS  Google Scholar 

  27. Oliver NS, Toumazou C, Cass AEG, Johnston DG (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210

    Article  CAS  Google Scholar 

  28. Xiangzhao A, Qiang M, Xingguang S (2013) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180(3–4):269–277

    Article  Google Scholar 

  29. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  30. Adam S, Talapin DV, Borchert H, Lobo A, McGinley C, de Castro ARB, Haase M, Weller H, Möller T (2005) The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals. J Chem Phys 123(8):084706

    Article  CAS  Google Scholar 

  31. Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: A review. Anal Chim Acta 872:7–25

    Article  CAS  Google Scholar 

  32. Zhang X, Liu M, Liu H, Zhang S (2014) Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens Bioelectron 56:307–312

    Article  CAS  Google Scholar 

  33. Zhang X, Xu F, Zhao B, Ji X, Yao Y, Wu D, Gao Z, Jiang K (2014) Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim Acta 133:615–622

    Article  CAS  Google Scholar 

  34. Hu B, Zhang L-P, Chen M-L, Chen M-L, Wang J-H (2012) The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay. Biosens Bioelectron 32(1):82–88

    Article  CAS  Google Scholar 

  35. Wang G-L, Hu X-L, Wu X-M, Li Z-J (2014) Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sensors Actuat B-Chem 205:61–66

    Article  CAS  Google Scholar 

  36. Lv X, Wang X, Huang D, Niu C, Zeng G, Niu Q (2014) Quantum dots and p-phenylenediamine based method for the sensitive determination of glucose. Talanta 129:20–25

    Article  CAS  Google Scholar 

  37. Li Y, Ma Q, Liu Z, Wang X, Su X (2014) A novel enzyme-mimic nanosensor based on quantum dot-Au nanoparticle@silica mesoporous microsphere for the detection of glucose. Anal Chim Acta 840:68–74

    Article  CAS  Google Scholar 

  38. Azizi SN, Chaichi MJ, Shakeri P, Bekhradnia A (2015) Quantum dots and ionic liquid-sensitized effect as an efficient and green catalyst for the sensitive determination of glucose. Spectrochim Acta A Mol Biomol Spectrosc 146:277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by he National Institute of Health through the National Institute of General Medical Sciences (2SC3GM081085), the Research Centers at Minority Institutions (G12MD007591), and the projects CTQ2013-48411-P (MINECO of Spain) and PEIC-2014-001-P (JCCM). Gema M. Durán thanks to MINECO of Spain for the predoctoral (BES-2011-045438) and stay (EEBB-I-14-08461) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos D. García.

Electronic supplementary material

ESM 1

(DOCX 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, G.M., Benavidez, T.E., Ríos, Á. et al. Quantum dot-modified paper-based assay for glucose screening. Microchim Acta 183, 611–616 (2016). https://doi.org/10.1007/s00604-015-1685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1685-3

Keywords

Navigation