Skip to main content
Log in

A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for the determination of magnetic bead-labeled C-reactive protein (CRP), a biomarker of cardiovascular diseases and inflammations. It is using a flexible giant magnetoimpedance (GMI)-based platform. Micro-patterned GMI sensing elements were prepared from a cobalt-based commercial amorphous ribbon (Metglas® 2714A) using micro electro-mechanical system (MEMS) technology. A gold film was then deposited on the GMI sensing element to act as a support for the immuno platform. Sandwich assays are performed using antibody-antigen combinations and biotin-streptavidin interactions on the gold film substrate surface via self-assembled layers. The GMI ratios of the sensors with different concentrations of antigen against CRP were investigated. The results show that the presence of CRP antigens on the biosensor improves the GMI effect owing to the induced magnetic dipole of superparamagnetic beads, and that the GMI ratios show distinct changes at high frequency. This bioassay for CRP has a linear detection range between 1 to 10 ng·mL−1. This new method in our perception provides a widely applicable basis for rapid diagnostic testing and will pave the way for future development of electrochemical point-of-care diagnostic devices for cardiac diseases.

(a) Graphical illustration of CRP test setup. (b) Magnetic field arrangement of the beads under an applied magnetic field. (c) GMI changes in relation to the concentration of the CRP

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mygind ND, Harutyunyan MJ, Mathiasen AB, Ripa RS, Thune JJ, Gotze JP, Johansen JS, Kastrup J, Grp CT (2011) The influence of statin treatment on the inflammatory biomarkers YKL-40 and Hs CRP in patients with stable coronary artery disease. Inflamm Res 60:281–287

    Article  CAS  Google Scholar 

  2. Pai JK, Mukamal KJ, Rexrode KM, Rimm EB (2008) C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PloS One 3, e1395

    Article  Google Scholar 

  3. Nagai T, Anzai T, Kaneko H, Mano Y, Anzai A, Maekawa Y, Takahashi T, Meguro T, Yoshikawa T, Fukuda K (2011) C-reactive protein overexpression exacerbates pressure overload–induced cardiac remodeling through enhanced inflammatory response. Hypertension 57:208–215

    Article  CAS  Google Scholar 

  4. Black S, Kushner I, Samols D (2004) C-reactive protein. JBC 47(279):48487–48490

    Article  Google Scholar 

  5. Lee WB, Chen YH, Lin HI, Shiesh SC, Lee GB (2011) An integrated microfluidic system for fast, automatic detection of C-reactive protein. Sensors Actuators B 157:710–721

    Article  CAS  Google Scholar 

  6. Kushner I, Sehgal AR (2002) Is high-sensitivity C-reactive protein an effective screening test for cardiovascular risk? Arch Intern Med 162:867–869

    Article  CAS  Google Scholar 

  7. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760

    CAS  Google Scholar 

  8. Zhou H, Bouwman K, Schotanus M, Verweij C, Marrero JA, Dillon D, Costa J, Lizardi P, Haab BB (2004) Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol 5:R28

    Article  Google Scholar 

  9. Pearson TA, Mensah GA, Hong YL, Smith SC (2004) CDC/AHA workshop on markers of inflammation and cardiovascular disease application to clinical and public health practice: overview. Circulation 110:E543–E544

    Article  Google Scholar 

  10. Meyer MHF, Hartmann M, Keusgen M (2006) SPR-based immunosensor for the CRP detection—a new method to detect a well known protein. Biosens Bioelectron 21:1987–1990

    Article  CAS  Google Scholar 

  11. Chammem H, Hafaid I, Meilhac O, Menaa F, Mora L, Abdelghani A (2014) Surface plasmon resonance for C-reactive protein detection in human plasma. J Biomater Nanobiotechnol 5:153–158

    Article  Google Scholar 

  12. Ding PF, Liu R, Liu S, Mao X, Hu R, Li G (2013) Reusable gold nanoparticle enhanced QCM immunosensor fordetecting C-reactive protein. Sensors Actuators B 188:1277–1283

    Article  CAS  Google Scholar 

  13. Yang SF, Gao BZ, Tsai HY, Fuh CB (2014) Detection of C - reactive protein based on a magnetic immunoassay by using functional magnetic and fluorescent nanoparticles in microplates. Analyst 139:5576–5581

    Article  CAS  Google Scholar 

  14. Yang YN, Lin HI, Wang JH, Shiesh SC, Lee GB (2009) An integrated microfluidic system for C-reactive protein measurement. Biosens Bioelectron 24:3091–3096

    Article  CAS  Google Scholar 

  15. Fakanya WM, Tothill IE (2014) Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. Biosensors 4:340–357

    Article  CAS  Google Scholar 

  16. Zeng SL, Zhou HK, Gan N, Cao YT (2011) A renewable C reactive protein amperometric immunosensor based on magnetic multiwalled carbon nanotubes probles modified electrode. Appl Mech Mater 80–81:452–456

    Article  Google Scholar 

  17. Meyer MHF, Hartmann M, Krgoldse HJ, Blankenstein G, Mueller-Chorus B, Oster J, Miethe P, Keusgen M (2007) CRP determination based on a novel magnetic biosensor. Biosens Bioelectron 22:973–979

    Article  CAS  Google Scholar 

  18. Machado FLA, de Argoldjo AEP, Puca AA, Rodrigues AR, Rezende SM (1999) Surface magnetoimpedance measurements in soft-ferromagnetic materials. Phys Status Solidi A 173:135

    Article  CAS  Google Scholar 

  19. Kraus L (2003) GMI modeling and material optimization. Sensors Actuators A 106:187

    Article  CAS  Google Scholar 

  20. Kim D, Kim H, Park S, Lee W, Jeung WY (2008) IEEE Trans Magn 44:3985–3988

    Article  CAS  Google Scholar 

  21. Chen L, Bao CC, Yang H, Lei C, Zhou Y, Cui DX (2011) A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells. Biosens Bioelectron 26:3246–3253

    Article  CAS  Google Scholar 

  22. Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344

    Article  CAS  Google Scholar 

  23. Kurlyandskaya GV, Sanchez ML, Hernando B, Prida VM, Gorria P, Tejedor M (2003) Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl Phys Lett 82:3053–3055

    Article  CAS  Google Scholar 

  24. Yang H, Chen L, Lei C, Zhang J (2010) Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18. Appl Phys Lett 97:043702

    Article  Google Scholar 

  25. Yang Z, Lei C, Zhou Y, Sun XC (2014) Study on the giant magnetoimpedance effect in micro-patterned Co-based amorphous ribbons with single strip structure and tortuous shape. Microsyst Technol :1–7

  26. Chen L, Zhou Y, Zhou ZM, Ding W (2009) Giant magnetoimpedance effects in patterned Co‐based ribbons with a meander structure. Phys Status Solidi A 206(7):1594–1598

    Article  CAS  Google Scholar 

  27. Panina LV, Mohri K (1994) Magneto-impedance effect in amorphous wires. Appl Phys Lett 65:1189

    Article  CAS  Google Scholar 

  28. Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) A giant magnetoimpedance sensor for sensitive detection of streptavidin-coupled Beads. Phys Status Solidi A 211:1389–1394

    Article  CAS  Google Scholar 

  29. Wang T, Zhou Y, Lei C, Lei J, Yang Z (2013) Ultrasensitive detection of beads protein A using the giant magnetoimpedance effect. Microchim Acta 180:1211–1216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (No. 61074168 and No. 61273065), National Science and Technology Support Program (2012BAK08B05) and National Key Laboratory Research Fund (9140C790403110C7905), Natural Science Foundation of Shanghai (13ZR1420800), the Analytical and Testing Center in Shanghai Jiao Tong University, the Center for Advanced Electronic Materials and Devices in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Yang, Chong Lei or Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, Y., Lei, C. et al. A flexible giant magnetoimpedance-based biosensor for the determination of the biomarker C-reactive protein. Microchim Acta 182, 2411–2417 (2015). https://doi.org/10.1007/s00604-015-1587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1587-4

Keywords

Navigation