Skip to main content
Log in

Determination of 4-aminophenol using a glassy carbon electrode modified with a three-dimensionally ordered macroporous film of polycysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A three-dimensionally ordered macroporous (3DOM) film of polycysteine (poly-Cys) was used to modify a glassy carbon electrode (GCE) to result in a sensor for 4-aminophenol. The new electrode was used to study the behavior of 4-aminophenol by cyclic voltammetry and differential pulse voltammetry. In comparison to a bare GCE and a GCE modified with poly-Cys without using template, this electrode displays a larger peak current which may be attributed to the structure of poly-Cys and the large surface area of the macroporous structure. The anodic peak current at a working voltage of 195 mV is linearly related to the concentration of 4-aminophenol in two concentration intervals: 0.02 to 20 μM and 20 to 200 μM, respectively. The detection limit is 8 nM (at an S/N ratio of 3). The method was successfully applied to the determination of 4-aminophenol in spiked water samples.

A glassy carbon electrode modified with three-dimensionally ordered macroporous polycysteine film was developed to serve as a sensor for determination of 4-aminophenol. The modified electrode presents lower detection limit, wider linear range and long-term stability for the determination of 4-aminophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khan SA, Hamayun M, Ahmed S (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microbiol Technol 38:10–13

    Article  CAS  Google Scholar 

  2. Xu H, Duan CF, Zhang ZF, Chen JY, Lai CZ, Lian M, Liu LJ, Cui H (2005) Flow injection determination of p-aminophenol at trace level using inhibited luminal-dimethylsulfoxide-NaOH-EDTA chemiluminescence. Water Res 39:396–402

    Article  CAS  Google Scholar 

  3. Filik H, Hayvalı M, Kılıç E, Apak R, Aksu D, Yanaz Z, Çengel T (2008) Development of an optical fibre reflectance sensor for p-aminophenol detection based on immobilised bis-8-hydroxyquinoline. Talanta 77:103–109

    Article  CAS  Google Scholar 

  4. Harmon RC, Kiningham KK, Valentovic MA (2006) Pyruvate reduces 4-aminophenol in vitro toxicity. Toxicol Appl Pharm 213:179–186

    Article  CAS  Google Scholar 

  5. The United States Pharmacopeial Convention (2004) The United States Pharmacopoeia 27-NF (The National Formulary) pp. 2494

  6. Bleye CD, Dumont E, Rozet E, Sacré PY, Chavez PF, Netchacovitch L, Piel G, Hubert P, Ziemons E (2013) Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: From development to method validation. Talanta 116:899–905

    Article  Google Scholar 

  7. Vishnikin AB, Al-Shwaiyat MKEA, Petrushina GA, Tsiganok LP, Andruch V, Bazel YR, Sklenářová H, Solich P (2012) Highly sensitive sequential injection determination of p-aminophenol in paracetamol formulations with 18-molybdodiphosphate heteropoly anion based on elimination of Schlieren effect. Talanta 96:230–235

    Article  CAS  Google Scholar 

  8. Kumar A, Panwar A (1993) Gas Chromatographic Separation of Isomeric Aminophenols, Aniline, Phenol, Benzoquinone and Azobenzene on an HP-1 Capillary Column. Mikrochim Acta 111:177–182

    Article  CAS  Google Scholar 

  9. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on grapheme-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108

    Article  CAS  Google Scholar 

  10. Safavi A, Maleki N, Moradlou O (2008) A selective and sensitive method for simultaneous determination of traces of paracetamol and p-Aminophenol in pharmaceuticals using carbon ionic liquid electrode. Electroanalysis 20:2158–2162

    Article  CAS  Google Scholar 

  11. Jamal M, Sarac AS, Magner E (2004) Conductive copolymer-modified carbon fibre microelectrodes: electrode characterisation and electrochemical detection of p-aminophenol. Sens Actuators B Chem 97:59–66

    Article  CAS  Google Scholar 

  12. Wang Z, Zhu H, Zhang H, Gao G, Sun Z, Liu H, Zhao X (2009) Fabrication of the single-wall carbon nanotube compound polymer film electrode and the simultaneous electrochemical behavior of aminophenol isomers. Electrochim Acta 54:7531–7535

    Article  CAS  Google Scholar 

  13. Lamas-Ardisana PJ, Queipo P, Fanjul-Bolado P (2008) Multiwalled carbon nanotube modified screen-printed electrodes for the detection of p-aminophenol: optimisation and application in alkaline phosphatase-based assays. Anal Chim Acta 615:30–38

    Article  CAS  Google Scholar 

  14. Fan Y, Liu JH, Yang CP, Yu M, Liu P (2011) Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol. Sens Actuators B Chem 157:669–674

    Article  CAS  Google Scholar 

  15. Duan S, Zhang X, Xu S, Zhou C (2013) Simultaneous determination of aminophenol isomers based on functionalized SBA-15 mesoporous silica modified carbon paste electrode. Electrochim Acta 88:885–891

    Article  CAS  Google Scholar 

  16. Huang W, Hu W, Song J (2003) Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated electrode. Talanta 61:411–416

    Article  CAS  Google Scholar 

  17. Zhang X, Wang S, Shen Q (2005) The electrochemical behavior of p-Aminophenol at a ω-Mercaptopropionic Acid Self-Assembled gold electrode. Microchim Acta 149:37–42

    Article  CAS  Google Scholar 

  18. Neto JRM, Santos WJR, Lima PR, Tanaka SMCN, Tanaka AA, Kubota LT (2011) A hemin-based molecularly imprinted polymer (MIP) grafted onto a glassy carbon electrode as a selective sensor for 4-aminophenol amperometric. Sens Actuators B Chem 152:220–225

    Article  Google Scholar 

  19. Yin H, Shang K, Meng X, Ai S (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim Acta 175:39–46

    Article  CAS  Google Scholar 

  20. Gamero M, Sosna M, Pariente F, Lorenzo E, Bartlett PN, Alonso C (2012) Influence of macroporous gold support and its functionalization on lactate oxidase-based biosensors response. Talanta 94:328–334

    Article  CAS  Google Scholar 

  21. Li JL, Han T, Wei NN, Du JY, Zhao XW (2009) Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor. Biosens Bioelectron 25:773–777

    Article  CAS  Google Scholar 

  22. Ben-Ali S, Cook DA, Bartlett PN, Kuhn A (2005) Bioelectrocatalysis with modified highly ordered macroporous electrodes. J Electroanal Chem 579:181–187

    Article  CAS  Google Scholar 

  23. Song YY, Zhang D, Gao W, Xia XH (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182

    Article  CAS  Google Scholar 

  24. Chen X, Cui ZC, Chen ZM, Zhang K, Lu G, Zhang G, Yang B (2002) The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface. Polym 43:4147–4152

    Article  CAS  Google Scholar 

  25. Zhang S, Shi Z, Wang J, Cheng Q, Wu K (2014) Preparation of ordered macroporous polycysteine film and application in sensitive detection of 4-chlorophenol. Electrochim Acta 130:734–739

    Article  CAS  Google Scholar 

  26. Ye YH, LeBlanc F, Hache A, Truong VV (2001) Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl Phys Lett 78:52–56

    Article  CAS  Google Scholar 

  27. DuVall SH, McCreery RL (1999) Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal Chem 71:4594–4602

    Article  CAS  Google Scholar 

  28. Matos IO, Alves WA (2011) Electrochemical determination of dopamine based on self-assembled peptide nanostructure. Appl Mater Interfaces 3:4437–4443

    Article  CAS  Google Scholar 

  29. Kim Y, Bong S, Kang Y, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  Google Scholar 

  30. Enache TA, Oliveira-Brett AM (2011) Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine. Bioelectrochem 81:46–52

    Article  CAS  Google Scholar 

  31. Terashima C, Rao TN, Sarada BV, Kubota Y, Fujishima A (2003) Direct electrochemical oxidation of disulfides at anodically pretreated boron-doped diamond electrodes. Anal Chem 75:1564–1572

    Article  CAS  Google Scholar 

  32. Liu W, Li C, Tang L, Tong A, Gu Y, Cai R, Zhang L, Zhang Z (2013) Nanopore array derived from l-cysteine oxide/gold hybrids: enhanced sensing platform for hydroquinone and catechol determination. Electrochim Acta 88:15–23

    Article  CAS  Google Scholar 

  33. Sãptaru N, Sarada BV, Popa E, Tryk DA, Fujishima A (2001) Voltammetric determination of l-Cysteine at conductive diamond electrodes. Anal Chem 73:514–519

    Article  Google Scholar 

  34. Zhou M, Ding J, Guo LP, Shang OK (2007) Electrochemical behavior of l-Cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Anal Chem 79:5328–5335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21361009, 21175033, 21363007), the Natural Science Foundation of Hubei Province (No. 2012FFC02401), the foundation of State Ethnic Affairs Commission ((No.12HBZ007), and the Foundation of Hubei University for Nationalities (No. MY2011T004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, Z., Jin, J. et al. Determination of 4-aminophenol using a glassy carbon electrode modified with a three-dimensionally ordered macroporous film of polycysteine. Microchim Acta 182, 823–829 (2015). https://doi.org/10.1007/s00604-014-1393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1393-4

Keywords

Navigation