Skip to main content
Log in

Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a highly sensitive and selective electrochemiluminescence (ECL) based method for the determination of pentachlorophenol (PCP). It is based on a new hybrid material composed of CdS quantum dots (QDs), graphene, and carbon nanotubes (CNTs), and uses peroxodisulfate as the coreactant. The use of this system results in a nearly 18-fold increase in ECL intensity. On interaction between PCP and the QDs, a decrease in ECL intensity is observed at PCP in a concentration as low as 1.0 pM and over a wide linear range (from 1.0 pM to 1.0 nM). The method is hardly affected by other chlorophenols and nitrophenols, and the electrode can be recycled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Shiu WY, Ma KC, Varhanickova D, Mackay D (1994) Chlorophenols and alkylphenols–a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29:1155–1224

    Article  CAS  Google Scholar 

  2. Keith LH, Telliard WA (1979) Priority pollutants I-a perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  3. International Agency for Research on Cancer (1991) International Agency for Research on Cancer, Occupational exposures in insecticide application, and some pesticides, Lyon

  4. Leblance YG, Gilbert R, Hubert J (1999) Determination of pentachlorophenol and its oil solvent in wood pole samples by SFE and GC with postcolumn flow splitting for simultaneous detection of the species. Anal Chem 71:78–85

    Article  Google Scholar 

  5. Mardones C, Palma J, Sepulveda C, Berg A, Baer DV (2003) Determination of tribromophenol and pentachlorophenol and its metabolite pentachloroanisole in Asparagus officinalis by gas chromatography/mass spectrometry. J Sep Sci 26:923–926

    Article  CAS  Google Scholar 

  6. Tayal A, Das L, Kaur I (1999) Biodegradation of pentachlorophenol (PCP) by white rot fungal strains screened from local sources and its estimation by high-performance liquid chromatography. Biomed Chromatogr 13:220–224

    Article  CAS  Google Scholar 

  7. Fischer W, Bund O, Hauck HE (1996) Thin-layer chromatographic analysis of phenols on TLC aluminium sheets RP-18 F 254s. J Anal Chem 354:889–891

    CAS  Google Scholar 

  8. Gremaud E, Turesky RJ (1997) Rapid analytical methods to measure pentachlorophenol in wood. J Agric Food Chem 45:1229–1233

    Article  CAS  Google Scholar 

  9. Lei JP, Ju HX (2011) Fundamentals and bioanalytical applications of functional quantum dots as electrogenerated emitters of chemiluminescence. Trends Anal Chem 30:1351–1359

    Article  CAS  Google Scholar 

  10. Kanwal S, Fu XH, Su XG (2010) Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2 chemiluminescence system for chromium(III) detection. Microchim Acta 169:167–172

    Article  CAS  Google Scholar 

  11. Jie GF, Zhang JJ, Wang DC, Cheng C, Chen HY, Zhu JJ (2008) Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem 80:4033–4039

    Article  CAS  Google Scholar 

  12. Wang Y, Lu J, Tang LH, Chang HX, Li JH (2009) Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal Chem 81:9710–9715

    Article  CAS  Google Scholar 

  13. Liu X, Zhang Y, Lei J, Xue Y, Cheng L, Ju H (2010) Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal Chem 82:7351–7356

    Article  CAS  Google Scholar 

  14. Wu HY, Ding ZY, Peng M, Song QJ (2012) Quantum dot induced phototransformation of 2,4-dichlorophenol, and its subsequent chemiluminescence reaction. Microchim Acta 178:203–210

    Article  CAS  Google Scholar 

  15. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4:1153–1161

    Article  CAS  Google Scholar 

  16. Dirk M, Guldi GM, Aminur R, Vito S, Nicholas AK, Davide B, Maurizio P (2006) CNT − CdTe versatile donor − acceptor nanohybrids. J Am Chem Soc 128:2315–2323

    Article  Google Scholar 

  17. Jie GF, Huang HP, Sun XL, Zhu JJ (2008) Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens Bioelectron 23:1896–1899

    Article  CAS  Google Scholar 

  18. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  19. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  20. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Article  CAS  Google Scholar 

  21. Ding SN, Xu JJ, Chen HY (2006) Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution. Chem Commun 34:3631–3633

    Article  Google Scholar 

  22. Ling LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ (2011) Fabrication of graphene–quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater 21:869–878

    Article  Google Scholar 

  23. Wang XF, Zhou Y, Xu JJ, Chen HY (2009) Signal-on electrochemiluminescence biosensors based on CdS–carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv Funct Mater 19:1444–1450

    Article  CAS  Google Scholar 

  24. Wang J, Han HY, Jiang XC, Huang L, Chen LN, Li N (2012) Quantum dot-based near-infrared electrochemiluminescent immunosensor with gold nanoparticle-graphene nanosheet hybrids and silica nanospheres double-assisted signal amplification. Anal Chem 84:4893–4899

    Article  CAS  Google Scholar 

  25. Tang LH, Zhu YH, Yang XL, Sun JJ, Li CZ (2008) Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect. Biosens Bioelectron 24:319–323

    Article  CAS  Google Scholar 

  26. Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  27. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832

    Article  CAS  Google Scholar 

  28. William S, Hummers JR, Richard EO (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  29. Yang SL, Liu XY, Zeng XD, Xia BY, Gu JP, Luo SL, Mai NN, Wei WZ (2010) Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors Actuators B 145:762–768

    Article  CAS  Google Scholar 

  30. Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137

    Article  CAS  Google Scholar 

  31. Michael K, Gary H (2010) Influence of selective nucleation on the one step chemical bath deposition of CdS/ZnO and CdS/ZnS composite films. Chem Mater 22:5483–5491

    Article  Google Scholar 

  32. Jie GF, Li LL, Chen C, Xuan J, Zhu JJ (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352–3358

    Article  CAS  Google Scholar 

  33. Yamashita K, Yamazaki-Nishida S, Harima Y, Segawa A (1991) Direct current electrogenerated chemiluminescent microdetermination of peroxydisulfate in aqueous solution. Anal Chem 63:872–876

    Article  CAS  Google Scholar 

  34. Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565

    Article  CAS  Google Scholar 

  35. Li JX, Yang LX, Luo SL, Chen BB, Li J, Lin HL, Cai QY, Yao SZ (2010) Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal Chem 82:7357–7361

    Article  CAS  Google Scholar 

  36. Wang HF, He Y, Ji TR, Yan XP (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81:1615–1621

    Article  CAS  Google Scholar 

  37. Mufeed AA, Harmon HJ (2005) Spectrophotometric detection of pentachlorophenol (PCP) in water using immobilized and water-soluble porphyrins. Biosens Bioelectron 20:1595–1601

    Article  Google Scholar 

  38. Tang CL, Meng GW, Huang Q, Huang ZL, Zhang XR, Wang ML (2012) A silica xerogel thin film based fluorescent sensor for pentachlorophenol rapid trace detection. Sensors Actuators B 171:332–337

    Article  Google Scholar 

  39. Jiang XH, Yang M, Meng YJ, Jiang W, Zhan JH (2013) Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS Appl Mater Interfaces. doi:10.1021/am401718p

    Google Scholar 

  40. Wu YH (2009) Nano-TiO2 dihexadecylphosphate based electrochemical sensor for sensitive determination of pentachlorophenol. Sensors Actuators B 137:180–184

    Article  Google Scholar 

  41. Li CC, Kang Q, Chen YF, Li JX, Cai QY, Yao SZ (2010) Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst 135:2806–2810

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (51178173, 51202065, 51078129), Innovation Research Team in University (IRT1238), Program for New Century Excellent Talents in University (11–0126), the Key Program of National Natural Science Foundation of China (51238002), and Hunan Province graduate student scientific research innovation plan (No. 521298769).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglian Luo.

Additional information

Jiesheng Liang and Shanli Yang contributed equally

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3854 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Yang, S., Luo, S. et al. Ultrasensitive electrochemiluminescent detection of pentachlorophenol using a multiple amplification strategy based on a hybrid material made from quantum dots, graphene, and carbon nanotubes. Microchim Acta 181, 759–765 (2014). https://doi.org/10.1007/s00604-013-1081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1081-9

Keywords

Navigation