Skip to main content
Log in

Titanium dioxide nanorod-based amperometric sensor for highly sensitive enzymatic detection of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Titanium dioxide nanorods (TNR) were grown on a titanium electrode by a hydrothermal route and further employed as a supporting matrix for the immobilization of nafion-coated horseradish peroxidase (HRP). The strong electrostatic interaction between HRP and TNR favors the adsorption of HRP and facilitates direct electron transfer on the electrode. The electrocatalytic activity towards hydrogen peroxide (H2O2) was investigated via cyclic voltammetry and amperometry. The biosensor exhibits fast response, a high sensitivity (416.9 μA·mM−1), a wide linear response range (2.5 nM to 0.46 mM), a detection limit as low as 12 nM, and a small apparent Michaelis-Menten constant (33.6 μM). The results indicate that this method is a promising technique for enzyme immobilization and for the fabrication of electrochemical biosensors.

A TiO2 nanorod film was directly grown on Ti substrate by a hydrothermal route, and was further employed for a supporting matrix to immobilize horseradish peroxidase as a biosensor electrode. The as-prepared hydrogen peroxide biosensor based on Nafion/HRP/TNR/Ti electrode exhibited fast response and excellent electrocatalytic activity toward H2O2, i.e., a high sensitivity (416.9 μA mM−1), a wide linear range (2.5 × 10−8 to 4.6 × 10−4 M) with a low detection limit (0.012 μM) and a small apparent Michaelis-Menten constant (33.6 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang LC, Zhang WD (2009) Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis 8:988

    Article  Google Scholar 

  2. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1

    Article  CAS  Google Scholar 

  3. Yin ZJ, Wu JJ, Yang ZS (2011) Amperometric sensors based on Ni/Al and Co/Al layered double hydroxides modified electrode and their application for hydrogen peroxide detection. Biosens Bioelectron 26:1970

    Article  CAS  Google Scholar 

  4. Rojkind M, Domínguez-Rosales JA, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872

    Article  CAS  Google Scholar 

  5. Wen Y, Lin AJ, Chen HF, Jiao YZ, Yang HF (2013) From DVD to dendritic nanostructure silver electrode for hydrogen peroxide detection. Biosens Bioelectron 41:857

    Article  CAS  Google Scholar 

  6. Wang AJ, Zhang PP, Li YF, Feng JJ, Dong WJ, Liu XY (2011) Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175:31

    Article  CAS  Google Scholar 

  7. Gopalan AI, Lee KP, Ragupathy D, Lee SH, Lee JW (2009) An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer- silica nanocomposite. Biomaterials 30:5999

    Article  CAS  Google Scholar 

  8. Matharu Z, Enomoto J, Revzin A (2013) Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes. Anal Chem 85:932

    Article  CAS  Google Scholar 

  9. Song J, Xu JM, Zhao PS, Lu LD, Bao JC (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with nafion and activated nanocarbon. Microchim Acta 172:117

    Article  CAS  Google Scholar 

  10. Zhang L, Zhang Q, Li JH (2007) Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv Funct Mater 17:1958

    Article  CAS  Google Scholar 

  11. Won YH, Aboagye D, Jang HS, Jitianu A, Stanciu LA (2010) Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J Mater Chem 20:5030

    Article  CAS  Google Scholar 

  12. Safavi A, Farjami F (2010) Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Anal Biochem 402:20

    Article  CAS  Google Scholar 

  13. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Article  CAS  Google Scholar 

  14. Kang XB, Pang GC, Liang XY, Wang M, Liu J, Zhu WM (2012) Study on a hydrogen peroxide biosensor based on horseradish peroxidase/GNPs-thionine/chitosan. Electrochim Acta 62:327

    Article  CAS  Google Scholar 

  15. Qiu JD, Cui SG, Liang RP (2010) Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubes by a hydrothermal synthetic method. Microchim Acta 171:333

    Article  CAS  Google Scholar 

  16. Aziz MA, Kawde AN (2013) Nanomolar amperometric sensing of hydrogen peroxide using a graphite electrode modified with palladium nanoparticles. Microchim Acta. doi:10.1007/s00604-013-1000-0

    Google Scholar 

  17. Menzel R, Cottam BF, Ziemian S, Shaffer MSP (2012) Two-stage, non-hydrolytic synthesis for improved control of TiO2 nanorod formation. J Mater Chem 22:12172

    Article  CAS  Google Scholar 

  18. Bullard JW, Cima MJ (2006) Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. Langmuir 22:10264

    Article  CAS  Google Scholar 

  19. Zhang YH, Xiao P, Zhou XY, Liu DW, Garcia BB, Cao GZ (2009) Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications. J Mater Chem 19:948

    Article  CAS  Google Scholar 

  20. Wang ZJ, Li MY, Su PP, Zhang YJ, Shen YF, Han DX, Ivaska A, Niu L (2008) Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites. Electrochem Commun 10:306

    Article  CAS  Google Scholar 

  21. Li Q, Cheng K, Weng WJ, Du PY, Han GR (2012) Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes. J Mater Chem 22:9019

    Article  CAS  Google Scholar 

  22. Dong LQ, Cheng K, Weng WJ, Song CL, Du PY, Shen G, Han GR (2011) Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates. Thin Solid Films 519:463

    Google Scholar 

  23. Wang QX, Zhang HL, Wu YW, Yu AM (2012) Amperometric hydrogen peroxide biosensor based on a glassy carbon electrode modified with polythionine and gold nanoparticles. Microchim Acta 176:279

    Article  CAS  Google Scholar 

  24. Upadhyay AK, Peng YY, Chen SM (2009) Immobilization of horseradish peroxidase and nile blue into the ormosil nanocomposite for the fabrication of hydrogen peroxide biosensor based on MWCNT modified glassy carbon electrode. Sensors Actuators B 141:557

    Article  CAS  Google Scholar 

  25. Zhang L, Zhang Q, Lu XB, Li JH (2007) Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets. Biosens Bioelectron 23:102

    Article  Google Scholar 

  26. Yuan PX, Zhuo Y, Chai YQ, Ju HX (2008) Dendritic silver/silicon dioxide nanocomposite modified electrodes for electrochemical sensing of hydrogen peroxide. Electroanalysis 17:1839

    Article  Google Scholar 

  27. Liu XQ, Feng HQ, Zhang JM, Zhao RX, Liu XH, Wong DKY (2012) Hydrogen peroxide detection at a borseradish peroxidase biosensor with a Au nanoparticle-dotted titanate nanotube hydrophobic ionic liquid scaffold. Biosens Bioelectron 32:188

    Article  CAS  Google Scholar 

  28. Xie Q, Zhao YY, Chen X, Liu HM, Evans DG, Yang WS (2011) Nanosheet-based titania microspheres with hollow core-shell structure encapsulating horseradish peroxidase for a mediator-free biosensor. Biomaterials 32:6588

    Article  CAS  Google Scholar 

  29. Wang Y, Ma XL, Wen Y, Xing YY, Zhang ZR, Yang HF (2010) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. Biosens Bioelectron 25:2442

    Article  CAS  Google Scholar 

  30. Cui XL, Li ZZ, Yang YC, Zhang W, Wang QF (2008) Low-potential sensitive hydrogen peroxide detection based on nanotubular TiO2 and platinum composite electrode. Electroanalysis 9:970

    Article  Google Scholar 

  31. Sun AL, Zhao HY, Zheng JB (2010) A novel hydrogen peroxide biosensor based on the Sn-ZnNPs/MWNTs nanocomposite film. Talanta 88:259

    Article  Google Scholar 

  32. Liu JP, Li YY, Huang XT, Zhu ZH (2010) Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. Nanoscale Res Lett 5:1177

    Article  CAS  Google Scholar 

  33. Tan SW, Tan XC, Jiang JY, Xu J, Zhang JL, Zhao DD, Liu L, Huang ZY (2012) Hydrogen peroxide biosensor based on poly (vinyl alcohol)/ZnO nanorods. J Electroanal Chem 668:113

    Article  CAS  Google Scholar 

  34. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198

    Article  CAS  Google Scholar 

  35. Villalonga R, Díez P, Yáñez-Sedeño P, Pingarrón JM (2011) Wiring horseradish peroxidase on gold nanoparticles-based nanostructured polymeric network for the construction of mediatorless hydrogen peroxide biosensor. Electrochim Acta 56:4672

    Article  CAS  Google Scholar 

  36. Zhao JW, Qin LR, Hao YH, Guo Q, Mu F, Yan ZK (2012) Application of tubular tetrapod magnesium oxide in a biosensor for hydrogen peroxide. Microchim Acta 178:439

    Article  CAS  Google Scholar 

  37. Xu SX, Zhang XF, Wan T, Zhang CX (2011) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Acta 172:199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by National Basic Research Program of China (973 Program, 2012CB933600) and by the National Natural Science Foundation of China (51072178, 51272228, 81071258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kui Cheng or Wenjian Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Cheng, K., Weng, W. et al. Titanium dioxide nanorod-based amperometric sensor for highly sensitive enzymatic detection of hydrogen peroxide. Microchim Acta 180, 1487–1493 (2013). https://doi.org/10.1007/s00604-013-1077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1077-5

Keywords

Navigation