Skip to main content
Log in

Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s) of Hb in RBCs is 0.42 s−1, and <1.13 s−1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode.

The transmembrane electron transfer rate of Hb in RBCs is slower than hemoglobin molecules directly immobilized on the chitosan film. Only those hemoglobin in RBCs closest to the plasma membrane and electrode could exchange electrons with the electrode. The immobilized RBCs showed sensitive electrocatalytic response to O2 and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Y, Yan J, Howland MC, Kwa T, Revzin A (2011) Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal Chem 83:8286–8292

    Article  CAS  Google Scholar 

  2. Faenza A, Bocchi M, Pecorari N, Franchi E, Guerrieri R (2012) Impedance measurement technique for high-sensitivity cell detection in microstructures with non-uniform conductivity distribution. Lab Chip 12:2046–2052

    Article  CAS  Google Scholar 

  3. Zhang DD, Zhang YM, Zheng L, Zhan YZ, He LC (2013) Graphene oxide/poly-L-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancer cells. Biosens Bioelectron 42:112–118

    Article  CAS  Google Scholar 

  4. Liu QJ, Yu JJ, Yu H, Xiao LD, Wang P, Yang M (2008) Microelectrode cell-based biosensor using electrochemical impedance spectroscopy for cancer research. Microchim Acta 19:309–312

    Google Scholar 

  5. Hu CY, Yang DP, Wang ZH, Huang P, Wang XS, Chen D, Cui DX, Yang M, Jia NQ (2013) Bio-mimetically synthesized Ag@BSA microspheres as a novel electrochemical biosensing interface for sensitive detection of tumor cells. Biosens Bioelectron 41:656–662

    Article  CAS  Google Scholar 

  6. Wu MS, Qian GS, Xu JJ, Chen HY (2012) Sensitive electrochemiluminescence detection of c-myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal Chem 84:5407–5414

    Article  CAS  Google Scholar 

  7. Du D, Liu SL, Chen J, Ju HX, Lian HZ, Li JX (2005) Colloidal gold nanoparticle modified carbon paste interface for studies of tumor cell adhesion and viability. Biomaterials 26:6487–6495

    Article  CAS  Google Scholar 

  8. Cao JT, Hao XY, Zhu YD, Sun K, Zhu JJ (2012) Microfluidic platform for the evaluation of multi-glycan expressions on living cells using electrochemical impedance spectroscopy and optical microscope. Anal Chem 84:6775–6782

    Article  CAS  Google Scholar 

  9. Chang HC, Wang XM, Shiu KK, ZhuYL WJL, Li QW, Chen BA, Jiang H (2013) Layer-by-layer assembly of graphene, Au and poly (toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosens Bioelectron 41:789–794

    Article  CAS  Google Scholar 

  10. Wu XM, Hu YJ, Jin J, Zhou NL, Wu P, Zhang H, Cai CX (2010) Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Anal Chem 82:3588–3596

    Article  CAS  Google Scholar 

  11. Premasiri WR, Lee JC, Ziegler LD (2012) Surface-enhanced raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing. J Phys Chem B 116:9376–9386

    Article  CAS  Google Scholar 

  12. Lakard S, Herlem G, Valles-Villareal N, Michel G, Propper A, Gharbi T, Fahys B (2005) Culture of neural cells on polymers coated surfaces for biosensor applications. Biosens Bioelectron 20:1946–1954

    Article  CAS  Google Scholar 

  13. Zhang JJ, Gu MM, Zheng TT, Zhu JJ (2009) Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal Chem 81:664–6648

    Google Scholar 

  14. Mulchandani A, Mulchandani P, Kaneva I, Chen W (1998) Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organopho-sphorus hydrolase. 1. potentiometeic microbial electrode. Anal Chem 70:4140–4145

    Article  CAS  Google Scholar 

  15. Zhu XL, Yang JH, Liu M, Wu Y, Shen ZM, Li GX (2013) Sensitive detection of human breast cancer cells based on aptamer-cell-aptamer sandwich architecture. Anal Chim Acta 764:59–63

    Article  CAS  Google Scholar 

  16. Kurz CM, Maurer A, Thees K, Schillberg S, Velten T, Thielecke H (2011) Impedance-controlled cell entrapment using microhole-array chips allows the isolation and identification of single, highly productive cells. Sens Actuators B Chem 158:345–352

    Article  CAS  Google Scholar 

  17. Pang YH, Ge ZQ, Liu Y, Shen XF (2012) Covalent grafting folate on Au electrode via click chemistry. Electrochem Commun 23:98–101

    Article  CAS  Google Scholar 

  18. Sezginturk MK, Uygun ZO (2012) An impedimetric vascular endothelial growth factor biosensor-based PAMAM/cysteamine-modified gold electrode for monitoring of tumor growth. Anal Biochem 423:277–285

    Article  CAS  Google Scholar 

  19. Ci YX, Li HN, Feng J (1998) Electrochemical method for determination of erythrocytes and leukocytes. Electroanalysis 10:921–925

    Google Scholar 

  20. Gu HY, Lu SY, Jiang QY, Yu CM (2006) A novel nitric oxide cellular biosensor based on red blood cells immobilized on gold nanoparticles. Anal Lett 39:2849–2859

    Article  CAS  Google Scholar 

  21. Zheng N, Zhou X, Yang WY, Li XJ, Yuan ZB (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Talanta 79:780–786

    Article  CAS  Google Scholar 

  22. Li HY, Tu HB, Wang YH, Levine M (2012) Vitamin C in mouse and human red blood cells: an HPLC assay. Anal Biochem 426:109–117

    Article  CAS  Google Scholar 

  23. Liu Q, Yu JM, Xu YH, Wang JD, Ying L, Song XX, Zhou GD, Chen JM (2013) Bioelectrocatalytic dechlorination of trichloroacetic acid at gel-immobilized hemoglobin on multiwalled carbon nanotubes modified graphite electrode: kinetic modeling and reaction pathways. Electrochim Acta 92:153–160

    Article  CAS  Google Scholar 

  24. Xu YX, Hu CG, Hu SS (2008) Direct electron-transfer of native hemoglobin in blood: kinetics and catalysis. Bioelectrochemistry 72:135–140

    Article  CAS  Google Scholar 

  25. Yu CM, Zhou XH, Gu HY (2010) Immobilization, direct electrochemistry and electrocatalysis of hemoglobin on colloidal silver nanoparticles-chitosan film. Electrochim Acta 55:8738–8743

    Article  CAS  Google Scholar 

  26. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  27. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  28. Fan H, Zhang SX, Ju P, Su HC, Ai SY (2012) Flower-like Bi2Se3 nanostructures: synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection. Electrochim Acta 64:171–176

    Article  CAS  Google Scholar 

  29. Onuoha AC, Zu X, Rusling JF (1997) Electrochemical generation and reactions of ferrylmyoglobins in water and microemulsions. J Am Chem Soc 119:3979–3986

    Article  CAS  Google Scholar 

  30. Nassar AEF, Zhang Z, Chynwat V, Frank HA, Rusling JF (1995) Orientation of myoglobin in cast multibilayer membranes of amphiphilic molecules. J Phys Chem 99:11013–11017

    Article  CAS  Google Scholar 

  31. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  32. Xie LL, Xu YD, Cao XY (2013) Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids Surf B 107:245–250

    Article  CAS  Google Scholar 

  33. Yagati AK, Lee T, Min JH, Choi JW (2013) An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface. Biosens Bioelectron 47:385–390

    Article  CAS  Google Scholar 

  34. Wu JP, Yin F (2013) Novel Hydrogen peroxide biosensor based on hemoglobin combined with electrospinning composite nanofibers. Anal Lett 46:818–830

    Article  CAS  Google Scholar 

  35. Li MG, Ji HQ, Wang YL, Liu L, Gao F (2012) MgFe-layered double hydroxide modified electrodes for direct electron transfer of heme proteins. Biosens Bioelectron 38:239–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (81001263, 21175075, 20875051 and 21075070), the Natural Science Foundation of Jiangsu Province (BK2009152, BK2011047), the Universities Natural Science Foundation of Jiangsu Province (10KJB150015), the Application Research Item of Nantong City (BK2011020) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Gu.

Additional information

Chunmei Yu and Li Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 13.1 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, C., Wang, L., Zhu, Z. et al. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode. Microchim Acta 181, 55–61 (2014). https://doi.org/10.1007/s00604-013-1060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1060-1

Keywords

Navigation