Skip to main content
Log in

Highly sensitive carbon paste electrode with silver-filled carbon nanotubes as a sensing element for determination of free cyanide ion in aqueous solutions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on newly synthesized Ag(I)-filled multiwall carbon nanotubes as a potential sensing element in ion-selective carbon paste electrodes for the determination of free cyanide in aqueous solution. The electrode was obtained by entrapping the silver-filled nanotubes into a carbon paste and displays a Nernstian response with a slope of 59.8 ± 0.3 mV decade−1, a very wide linear range (from 21.0 nM to 0.1 M of cyanide), a lower detection limit of 13.0 nM, and a response time of <2 min. The operational lifetime is up to 3 months without significant deviation in normal function.

Silver(I)-filled Multiwall Carbon Nanotube as Sensing Element in Cyanide-selective Carbon Paste Electrode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosentreter JJ, Skogerboe RK (1991) Trace determination and speciation of cyanide ion by atomic absorption spectroscopy. Anal Chem 63:682–688

    Article  CAS  Google Scholar 

  2. Zagury GJ, Oudjehani K, Deschenes L (2004) Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Sci Total Environ 320:211–224

    Article  CAS  Google Scholar 

  3. Zaknun JJ, Stieglbauer K, Trenkler J (2005) Cyanide-induced a kinetic rigid syndrome: clinical, MRI, FDG-PET, β-CIT and HMPAO SPECT findings. Parkinsonism Relat Disord 11:125–129

    Article  Google Scholar 

  4. Karmarkar S (2002) Anion-exchange chromatography of metal cyanide complexes with gradient separation and direct UV detection. J Chromatogr A 956:229–235

    Article  CAS  Google Scholar 

  5. Mirmohseni A, Alipour A (2002) Construction of a sensor for the determination of cyanide in industrial effluents: a method based on quartz crystal microbalance. Sens Actuators B 84:245–251

    Article  Google Scholar 

  6. Anzenbacher P, Tyson DS, Jursíková K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6233

    Article  CAS  Google Scholar 

  7. Suzuki T, Hioki A, Kurahashi M (2003) Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions. Anal Chim Acta 476:159–165

    Article  CAS  Google Scholar 

  8. Weinberg HS, Cook SJ (2002) Segmented flow injection, UV digestion, and amperometric detection for the determination of total cyanide in wastewater treatment plant effluents. Anal Chem 74:6055–6063

    Article  CAS  Google Scholar 

  9. Chattaraj S, Das AK (1991) Indirect determination of free cyanide in industrial waste effluent by atomic absorption spectrometry. Analyst 116:739–741

    Article  CAS  Google Scholar 

  10. Tracqui A, Raul JS, Geraut A (2002) Determination of blood cyanide by HPLC-MS. J Anal Toxicol 26:144–148

    CAS  Google Scholar 

  11. Yari A, Kargosha K (2006) Simple photometric determination of free cyanide ion in aqueous solution with 2,6-dichlorophenolindophenol. Centr Europ J Chem 4:329–337

    Article  CAS  Google Scholar 

  12. Dadfarnia S, Shabani AMH, Tamadon F, Rezaei M (2007) Indirect determination of free cyanide in water and industrial waste water by flow injection-atomic absorption spectrometry. Microchim Acta 158:159–163

    Article  CAS  Google Scholar 

  13. Ravichandran K, Baldwin RP (1981) Chemically modified carbon paste electrodes. J Electroanal Chem 126:293–300

    Article  CAS  Google Scholar 

  14. Wang J, Kirgoz UA, Mo JW, Lu J, Kawde AN, Muck A (2001) Glassy carbon paste electrodes. Electrochem Commun 3:203–208

    Article  CAS  Google Scholar 

  15. Ravichandran K, Baldwin RP (1983) Phenylenediamine-containing chemically modified carbon paste electrodes as catalytic voltammetric sensors. Anal Chem 55:1586–1591

    Article  CAS  Google Scholar 

  16. Kalcher K, Grabec I (1990) Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2:419–433

    Article  CAS  Google Scholar 

  17. Ivan S, Carel V, Jiri B, Jiri Z (2001) Carbon paste electrodes in modern electroanalysis. Crit Rev Anal Chem 31:311–345

    Article  Google Scholar 

  18. Walcarius A, Bessiere J (1997) Silica-modified carbon paste electrode for copper determination in ammoniacal medium. Electroanalysis 9:707–713

    Article  CAS  Google Scholar 

  19. Arrigan DWM (1994) Voltammetric determination of trace metals and organics after accumulation at modified electrodes. Analyst 119:1953–1966

    Article  CAS  Google Scholar 

  20. Fiorucci AR, Cavalheiro ETG (2002) The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations. J Pharmac Biomed Anal 28:909–915

    Article  CAS  Google Scholar 

  21. Vytras K, Svancara I, Metelka R (2009) Carbon paste electrodes in electroanalytical chemistry. J Serb Chem Soc 74:1021–1033

    Article  CAS  Google Scholar 

  22. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  23. Rao CN, Satishkumar BC, Govindaraj A, Nath M (2001) Nanotubes Chem Phys Chem 2:78–105

    CAS  Google Scholar 

  24. Baughman RH, Zakhidov A, de Heer WA (2002) Carbon nanotubes: the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  25. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  CAS  Google Scholar 

  26. Wang J, Kawde AN, Musameh M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128:912–916

    Article  CAS  Google Scholar 

  27. Cook J, Sloan J, Green MLH (1997) Opening and filling carbon nanotubes. Fullerene Sci Technol 5:695–704

    CAS  Google Scholar 

  28. Sinha AK, Hwang DW, Hwang LP (2000) A novel approach to bulk synthesis of carbon nanotubes filled with metal by a catalytic chemical vapor deposition method. Chem Phys Lett 332:455–460

    Article  CAS  Google Scholar 

  29. Ulakhovich NA, Zakieva DZ, Yu GG, Budnikov GK (1993) Voltammetric determination of cyanide ions using preconcentration at a carbon-paste electrode modified with liquid crystals. J Anal Chem (Transl of Zh Anal Khim) 48:731–733

    Google Scholar 

  30. Amine A, Alafandy M, Kauffmann JM, Pekli MN (1995) Cyanide determination using an amperometric biosensor based on cytochrome oxidase inhibition. Anal Chem 67:2822–2827

    Article  CAS  Google Scholar 

  31. Abbaspour A, Asadi M, Ghaffarinejad A, Safaei E (2005) A selective modified carbon paste electrode for determination of cyanide using tetra-3,4-pyridinoporphyrazinatocobalt(II). Talanta 66:931–936

    Article  CAS  Google Scholar 

  32. Sepahvand R, Adeli M, Astinchap B, Kabiri R (2008) New nanocomposites containing metal nanoparticles carbon nanotube and polymer. J Nanopart Res 10:1309–1318

    Article  CAS  Google Scholar 

  33. Liu H, Murad S, Jameson CJ (2006) Ion permeation dynamics in carbon nanotubes. J Chem Phys 125:084713–084726

    Article  Google Scholar 

  34. Beu TA (2010) Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions. J Chem Phys 132:164513–164528

    Article  Google Scholar 

  35. Sumikama T, Saito S, Ohmine I (2006) Mechanism of ion permeation in a model channel: free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube. J Phys Chem B 110:20671–20677

    Article  CAS  Google Scholar 

  36. Lindner E, Toth K, Pungor E (1986) Definition and determination of response time of ion selective electrodes. Pure Appl Chem 58:469–479

    Article  CAS  Google Scholar 

  37. Buck RP, Lindner E (1994) Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem 66:2527–2536

    Article  CAS  Google Scholar 

  38. Macca C (2004) Response time of ion-selective electrodes: current usage versus IUPAC recommendations. Anal Chim Acta 512:183–190

    Article  CAS  Google Scholar 

  39. Umezawa Y (1990) Handbook of ion selective electrodes: selectivity coefficients. CRC Press, Boca Raton

    Google Scholar 

  40. Pretsch E, Bakker E, Buhlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72:1127–1133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Yari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yari, A., Sepahvand, R. Highly sensitive carbon paste electrode with silver-filled carbon nanotubes as a sensing element for determination of free cyanide ion in aqueous solutions. Microchim Acta 174, 321–327 (2011). https://doi.org/10.1007/s00604-011-0629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0629-9

Keywords

Navigation