Skip to main content
Log in

Analysis of narcotic drugs in biological samples using hollow fiber liquid–phase microextraction and gas chromatography with nitrogen phosphorus detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for trace analysis of the narcotic drugs alfentanil, fentanyl, and sufentanil in plasma and urine. Two–phase hollow fiber liquid–phase microextraction was combined with GC using nitrogen–phosphorus detection. Experimental parameters were optimized to give a viable analytical procedure whose limits of detection range from 8 to 15 ng L−1 (at an S/N of 3). The calibration curves are linear between 0.1 and 50 μg L−1, with squared correlation coefficients (r 2) between 0.9953 and 0.9979. Precision values range from 2.4% to 3.3% (intra–day RSD) and 3.2 to 6.3% (inter–day RSD). The relative recoveries varied from 27.8% to 84.6% (for spiked plasma) and 75 to 85.2% (for spiked urine). The method consumes little solvent, is simple, fast, inexpensive, and well suitable for the analysis of complicated matrices.

Schematic diagram of two phase hollow fiber liquid-phase microextraction (HF-LPME) combined with GC and nitrogen–phosphorus detection for trace analysis of the narcotic drugs alfentanil, fentanyl, and sufentanil in plasma and urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clotz MA, Nahata MC (1991) Clinical uses of fentanyl, sufentanil and alfentanil. Clin Pharm 10:581–593

    CAS  Google Scholar 

  2. Scholz J, Steinfath M, Schulz M (1996) Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil–an update. Clin Pharmacokinet 31:275–292

    Article  CAS  Google Scholar 

  3. Valaer AK, Huber T, Andurkar SV, Clark CR, De Ruiter J (1997) Development of a gas chromatographic–mass spectrometric drug screening method for the N–dealkylated metabolites of fentanyl, sufentanil, and alfentanil. J Chromatogr Sci 35:461–466

    CAS  Google Scholar 

  4. Fryirsa B, Woodhouse A, Huang JL, Dawson M, Mather LE (1997) Determination of subnanogram concentrations of fentanyl in plasma by gas chromatography–mass spectrometry: comparison with standard radioimmunoassay. J Chromatogr B 688:79–85

    Article  CAS  Google Scholar 

  5. Ruangyuttikarn W, Law MY, Rollins DE, Moody DE (1990) Detection of fentanyl and its analogs by enzyme–linked immunosorbent assay. J Anal Toxicol 14:160–164

    CAS  Google Scholar 

  6. Dotsikas Y, Loukas YL, Siafaka I (2002) Determination of umbilical cord and maternal plasma concentrations of fentanyl by using novel spectrophotometric and chemiluminescence enzyme immunoassays. Anal Chim Acta 459:177–185

    Article  CAS  Google Scholar 

  7. Dotsikas Y, Loukas YL (2004) Employment of 4–(1–imidazolyl)phenol as a luminol signal enhancer in a competitive–type chemiluminescence immunoassay and its comparison with the conventional antigen–horseradish peroxidase conjugate–based assay. Anal Chim Acta 509:103–109

    Article  CAS  Google Scholar 

  8. Raikos N, Theodoridis G, Alexiadou E, Gika H, Argiriadou H, Parlapani H, Tsoukali H (2009) Analysis of anesthetics and analgesics in human urine by headspace SPME and GC. J Sep Sci 32:1018–1026

    Article  CAS  Google Scholar 

  9. Ebrahimzadeh H, Yamini Y, Gholizade A, Sedighi A, Kasraee S (2008) Determination of fentanyl in biological and water samples using single–drop liquid–liquid–liquid microextraction coupled with high–performance liquid chromatography. Anal Chim Acta 626:193–199

    Article  CAS  Google Scholar 

  10. Wang C, Li E, Xu G, Wang H, Gong Y, Li P, Liu S, He Y (2009) Determination of fentanyl in human breath by solid–phase microextraction and gas chromatography–mass spectrometry. Microchem J 91:149–152

    Article  CAS  Google Scholar 

  11. Gupta PK, Manral L, Ganesan K, Dubey DK (2007) Use of single–drop microextraction for determination of fentanyl in water samples. Anal Bioanal Chem 388:579–583

    Article  CAS  Google Scholar 

  12. Van Nimmen NFJ, Poels KLC, Veulemans HAF (2004) Highly sensitive gas chromatographic—mass spectrometric screening method for the determination of picogram levels of fentanyl, sufentanil and alfentanil and their major metabolites in urine of opioid exposed workers. J Chromatogr B 804:375–387

    Article  Google Scholar 

  13. Dufresne C, Favetta P, Gonin R, Bureau J, Guitton J (2002) Simultaneous determination of fentanyl and midazolam in plasma using direct solid–phase microextraction before gas chromatography–mass spectrometry analysis. Anal Lett 35:1575–1590

    Article  CAS  Google Scholar 

  14. Huynh NH, Tyrefors N, Ekman L, Johansson M (2005) Determination of fentanyl in human plasma and fentanyl and norfentanyl in human urine using LC–MS/MS. J Pharm Biomed Anal 37:1095–1100

    Article  CAS  Google Scholar 

  15. Ghazi-Khansari M, Zendehdel R, Pirali-Hamedani M, Amini M (2006) Determination of morphine in the plasma of addicts in using Zeolite Y extraction following high–performance liquid chromatography. Clin Chim Acta 364:235–238

    Article  CAS  Google Scholar 

  16. Soriano C, Munoz-Guerra J, Carreras D, Rodriguez C, Rodriguez AF, Cortes R (1996) Automated analysis of drugs in urine. J Chromatogr B 687:183–187

    Article  CAS  Google Scholar 

  17. Meadway C, George S, Braithwaite R (2002) A rapid GC–MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine and 6–MAM in urine. Forensic Sci Int 127:136–141

    Article  CAS  Google Scholar 

  18. Kudo K, Ishida T, Hara K, Kashimura S, Tsuji A, Ikeda N (2007) Simultaneous determination of 13 amphetamine related drugs in human whole blood using an enhanced polymer column and gas chromatography–mass spectrometry. J Chromatogr B 855:115–120

    Article  CAS  Google Scholar 

  19. Prosen H, Zupancíicí-Kralj L (1999) Solid–phase microextraction. Trends Anal Chem 18:272–282

    Article  CAS  Google Scholar 

  20. Sarafraz-Yazdi A, Amiri A (2010) Liquid–phase microextraction. Trends Anal Chem 29:1–14

    Article  CAS  Google Scholar 

  21. Barri T, Jönsson J-Å (2008) Advances and developments in membrane extraction for gas chromatography: Techniques and applications. J Chromatogr A 1186:16–38

    Article  CAS  Google Scholar 

  22. Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184:191–219

    Article  CAS  Google Scholar 

  23. Pawliszyn J (1999) Applications of solid phase microextraction. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  24. Pedersen-Bjergaard S, Rasmussen KE (2008) Liquid–phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J Chromatogr A 1184:132–142

    Article  CAS  Google Scholar 

  25. Ridgway K, Lalljie SPD, Smith RM (2007) Sample preparation techniques for the determination of trace residues and contaminants in foods. J Chromatogr A 1153:36–53

    Article  CAS  Google Scholar 

  26. Xu L, Basheer C, Lee HK (2007) Developments in single–drop microextraction. J Chromatogr A 1152:184–192

    Article  CAS  Google Scholar 

  27. Pedersen-Bjergaard S, Rasmussen KE (1999) Liquid–liquid–liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal Chem 71:2650–2656

    Article  CAS  Google Scholar 

  28. Psillakis E, Kalogerakis N (2003) Developments in liquid–phase microextraction. Trends Anal Chem 22:565–574

    Article  CAS  Google Scholar 

  29. Rasmussen KE, Pedersen-Bjergaard S (2004) Developments in hollow fiber–based, liquid–phase microextraction. Trends Anal Chem 23:1–10

    Article  CAS  Google Scholar 

  30. Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid–phase microextraction: a review. Anal Chim Acta 624:253–268

    Article  CAS  Google Scholar 

  31. Saraji M, Farajmand B (2008) Application of single–drop microextraction combined with in–microvial derivatization for determination of acidic herbicides in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1178:17–23

    Article  CAS  Google Scholar 

  32. Saraji M, Mousavi F (2010) Use of hollow fiber–based liquid–liquid–liquid microextraction and high–performance liquid chromatography–diode array detection for the determination of phenolic acids in fruit juices. Food Chem 123:1310–1317

    Article  CAS  Google Scholar 

  33. Xiao Q, Hu B, Yu C, Xia L, Jiang Z (2006) Optimization of a single–drop microextraction procedure for the determination of organophosphorus pesticides in water and fruit juice with gas chromatography–flame photometric detection. Talanta 69:848–855

    Article  CAS  Google Scholar 

  34. De Jager LS, Andrews AR (2001) Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography. J Chromatogr A 911:97–105

    Article  Google Scholar 

  35. Li G, Zhang L, Zhang Z (2008) Determination of polychlorinated biphenyls in water using dynamic hollow fiber liquid–phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A 1204:119–122

    Article  CAS  Google Scholar 

  36. Xia L, Hu B, Wu Y (2007) Hollow fiber–based liquid–liquid–liquid microextraction combined with high–performance liquid chromatography for the speciation of organomercury. J Chromatogr A 1173:44–51

    Article  CAS  Google Scholar 

  37. Pedersen-Bjergaard S, Rasmussen KE (2005) Bioanalysis of drugs by liquid–phase microextraction coupled to separation techniques. J Chromatogr B 817:3–12

    Article  CAS  Google Scholar 

  38. Bagheri H, Es-haghi A, Khalilian F, Rouini MR (2007) Determination of fentanyl in human plasma by head–space solid–phase microextraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal 43:1763–1768

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Research Council of Isfahan University of Technology (IUT) and Center of Excellence in Sensor and Green Chemistry for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saraji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraji, M., Boroujeni, M.K. Analysis of narcotic drugs in biological samples using hollow fiber liquid–phase microextraction and gas chromatography with nitrogen phosphorus detection. Microchim Acta 174, 159–166 (2011). https://doi.org/10.1007/s00604-011-0612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0612-5

Keywords

Navigation