Skip to main content
Log in

Analysis of eight pyrethroids in water samples by liquid–liquid microextraction based on solidification of floating organic droplet combined with gas chromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel method was developed for the determination of eight pyrethroids in water samples by liquid–liquid microextraction based on solidification of floating organic droplets followed by gas chromatography with electron capture detection. The type and volume of the extraction solvents, extraction time, sample solution temperature, stirring rate and ionic strength were studied and optimized. Under the optimum conditions, enrichment factors ranged from 824 to 1,432, and the limit of detection range from 2.0 to 50 ng∙L−1. The calibration graph is linear from 0.15 to 80 μg∙L−1 for cyfluthrin, fenvalerate, fluvalinate and deltamethrin, 0.09 to 80 μg∙L−1 for fenpropathrin, 0.006 to 80 μg∙L−1 for lambda-cyhalothrin, 0.026 to 80 μg∙L−1 for permethrin, 0.01 to 80 μg∙L−1 for cypermethrin. The correlation coefficients (r) varied from 0.9961 to 0.9988. The method was successfully applied to the determination of pyrethroid pesticide residues in tap water, well water, reservoir water, and river water. Recoveries ranged from 79.0% to 113.6%, and relative standard deviations are between 4.1% and 8.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mak SK, Shan GM, Lee HJ, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD (2005) Development of a class selective immunoassay for the type II pyrethroid insecticides. Anal Chim Acta 534:109–120

    Article  CAS  Google Scholar 

  2. Shan GM, Wengatz I, Stoutamire DW, Gee SJ, Hammock BD (1999) An enzyme-linked immunosorbent assay for the detection of esfenvalerate metabolites in human urine. Chem Res Toxicol 12:1033–1041

    Article  CAS  Google Scholar 

  3. Abd El-Aty AM, Choi JH, Park JH, Shim JH (2007) An evaluation of the effect of repeated doses of oral activated charcoal on the depletion of enrofloxacin residual levels in chicken breast muscles. Berl Münch Tierärztl Wochenschr 120:210–214

    CAS  Google Scholar 

  4. Jeon HR, Abd El-Aty AM, Cho SK, Choi JH, Kim KY, Park RD, Shim JH (2007) Multiresidue analysis of four pesticide residues in water dropwort (Oenanthe javanica) via pressurized liquid extraction, supercritical fluid extraction, and liquid–liquid extraction and gas chromatographic determination. J Sep Sci 30:1953–1963

    Article  CAS  Google Scholar 

  5. Choi JH, Abd El-Aty AM, Shen JY, Kim MR, Shim JH (2006) Simultaneous determination of pyrethrolds from pesticide residues in porcine muscle and pasteurized milk using GC. Berl Münch Tierärztl Wochenschr 119:456–460

    CAS  Google Scholar 

  6. Reigart JR, Roberts JR (1999) Recognition and management of pesticide poisonings, 5th edn. US Environment Protection Agency (EPA), Washington

    Google Scholar 

  7. Environmental Health Criteria (1999) World Health Organization, Geneva

  8. U.S. Environmental Protection Agency, Washington, U.S., http://www.epa.gov

  9. Walters JK, Boswell LE, Green MK, Heumann MA, Karam LE, Morrissey BF, Waltz JE (2009) Pyrethrin and pyrethroid illnesses in the Pacific Northwest: a five-year review. Public Health Rep 124(1):149–159

    Google Scholar 

  10. Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106

    Article  CAS  Google Scholar 

  11. Galera MM, Garcia MDG, Valverde RS (2006) Determination of nine pyrethroid insecticides by high-performance liquid chromatography with post-column photoderivatization and detection based on acetonitrile chemiluminescence. J Chromatogr A 1113:191–197

    Article  CAS  Google Scholar 

  12. Zhou QX, Xiao JP, Xie GH (2009) Enrichment of pyrethroid residues in environmental waters using a multiwalled carbon nanotubes cartridge, and analysis in combination with high performance liquid chromatography. Microchim Acta 164:419–424

    Article  CAS  Google Scholar 

  13. Ye FG, Xie ZH, Wu XP, Lin XC (2006) Determination of pyrethroid pesticide residues in vegetables by pressurized capillary electrochromatography. Talanta 69:97–102

    Article  CAS  Google Scholar 

  14. Gupta S, Handa SK, Sharma KK (1998) A new spray reagent for the detection of synthetic pyrethroids containing a nitrile group on thin-layer plates. Talanta 45:1111–1114

    Article  CAS  Google Scholar 

  15. Hao XL, Kuang H, Li YL, Yuan Y, Peng CF, Chen W, Wang LB, Xu CL (2009) Development of an enzyme-linked immunosorbent assay for the r-cyano pyrethroids multiresidue in Tai Lake Water. J Agric Food Chem 57:3033–3039

    Article  CAS  Google Scholar 

  16. Esteve-Turrillas FA, Pastor A, De La Guardia M (2006) Microwave-assisted extraction of pyrethroid insecticides from semi permeable membrane devices (SPMDs) used to indoor air monitoring. Anal Chim Acta 560:118–127

    Article  CAS  Google Scholar 

  17. Yoshida T (2009) Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. J Chromatogr A 1216(26):5069–5076

    Article  CAS  Google Scholar 

  18. Casas V, Llompart M, García-Jares C, Cela R, Dagnac T (2006) Multivariate optimization of the factors influencing the solid-phase microextraction of pyrethroid pesticides in water. J Chromatogr A 1124:148–156

    Article  CAS  Google Scholar 

  19. Akre CJ, Macnell JD (2006) Determination of eight synthetic pyrethroids in bovine fat by gas chromatography with electron capture detection. J AOAC Int 89:1425–1431

    CAS  Google Scholar 

  20. Zang XH, Wang C, Gao ST, Zhou X, Wang Z (2008) Analysis of pyrethroid pesticides in water samples by dispersive liquid–liquid microextraction coupled with gas chromatography. Chinese J Anal Chem 36(6):765–769

    CAS  Google Scholar 

  21. Li HP, Lin CH, Jen JF (2009) Analysis of aqueous pyrethroid residuals by one-step microwave-assisted headspace solid-phase microextraction and gas chromatography with electron capture detection. Talanta 79:466–471

    Article  CAS  Google Scholar 

  22. Elflein L, Berger-Preiss E, Levsen K, Wünsch G (2003) Development of a gas chromatography–mass spectrometry method for the determination of household insecticides in indoor air. J Chromatogr A 985(1–2):147–157

    Article  CAS  Google Scholar 

  23. Qin S, Gan JJ (2006) Enantiomeric differences in permethrin degradation pathways in soil and sediment. J Agric Food Chem 54:9145–9151

    Article  CAS  Google Scholar 

  24. Leandro CC, Bishop DA, Fusell RJ, Smith FD, Keely BJ (2006) Semiautomated determination of pesticides in water using solid phase extraction disks and gas chromatography-mass spectrometry. J Agric Food Chem 54(3):645–649

    Article  CAS  Google Scholar 

  25. You J, Lydy MJ (2004) Simultaneous determination of pyrethroid, organophosphate and organochlorine pesticides in fish tissue using tandem solid-phase extraction clean-up. Int J Environ Anal Chem 84:559–571

    Article  CAS  Google Scholar 

  26. Serôdio P, MF NJ (2005) Response surface optimization for determination of pesticide multiresidues by matrix solid-phase dispersion and gas chromatography. Anal Bioanal Chem 382(4):1141–1151

    Article  Google Scholar 

  27. Hu YY, Zheng P, He YZ, Sheng GP (2005) Simultaneous determination of pyrethroid, organophosphate and organochlorine pesticides in fish tissue using tandem solid-phase extraction clean-up. J Chromatogr A 1098(1–2):188–193

    Article  CAS  Google Scholar 

  28. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  29. Sakamoto M, Tsutsumi T (2004) Applicability of headspace solid-phase microextraction to the determination of multi-class pesticides in waters. J Chromatogr A 1028(1):63–74

    Article  CAS  Google Scholar 

  30. Helena P, Locita IK (1999) Solid-phase microextraction. Trend Anal Chem 18:272–282

    Article  Google Scholar 

  31. Zhao F, Lu S, Du W (2009) Lonic liquid-based headspace single-drop microextraction coupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim Acta 165:29–33

    Article  CAS  Google Scholar 

  32. Peng JF, Lu JX, Hu XL (2007) Determination of atrazine, desethyl atrazine and desisopropyl atrazine in environmental water samples using hollow fiber-protected liquid-phase microextraction and high performance liquid chromatography. Microchim Acta 158:181–186

    Article  CAS  Google Scholar 

  33. Jiang X, Lee HK (2004) Solvent bar microextraction. Anal Chem 76(18):5591–5596

    Article  CAS  Google Scholar 

  34. Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. Trends Anal Chem 21:54–64

    Article  Google Scholar 

  35. Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M (2006) Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chrornatography-flame photometric detector. J Chromatogr A 1101:307–312

    Article  CAS  Google Scholar 

  36. Zang XH, Wu QH, Zhang MY, Xi GH, Wang Z (2009) Developments of dispersive liquid–liquid microextraction technique. Chinese J Anal Chem 37(2):161–168

    Article  CAS  Google Scholar 

  37. Khalili-Zanjani MR, Yamini Y, Shariati S, Jonsson JA (2007) A new liquid-phase microextraction method based on solidification of floating organic drop. Anal Chim Acta 585:286–293

    Article  CAS  Google Scholar 

  38. Khalili-Zanjani MR, Yamini Y, Yazdanfar N, Shariati S (2008) Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction–gas chromatography–flame photometric detection. Anal Chim Acta 606:202–208

    Article  CAS  Google Scholar 

  39. Farahani H, Reza Ganjali M, Dinarvand R, Norouzi P (2008) Screening method for phthalate esters in water using liquid-phase microextraction based on the solidification of a floating organic microdrop combined with gas chromatography–mass spectrometry. Talanta 76:718–723

    Article  CAS  Google Scholar 

  40. Xu H, Ding ZQ, Lv LL, Song DD, Feng YQ (2009) A novel dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Anal Chim Acta 636:28–33

    Article  CAS  Google Scholar 

  41. Bagheri H, Saber A, Mousavi SR (2004) Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography–mass spectrometry. J Chromatogr A 1046(1–2):27–33

    CAS  Google Scholar 

  42. Alvarez MF, Llompart M, Lamas P, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction–gas chromatography. J Chromatogr A 1188:154–163

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from both the Natural Science Foundations of Hebei (B2010000657) and the Scientific Research Foundation of Education Department of Hebei Province (2009132) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Q., Feng, T., Song, S. et al. Analysis of eight pyrethroids in water samples by liquid–liquid microextraction based on solidification of floating organic droplet combined with gas chromatography. Microchim Acta 171, 241–247 (2010). https://doi.org/10.1007/s00604-010-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0430-1

Keywords

Navigation