Skip to main content
Log in

Microfluidic techniques for dynamic single-cell analysis

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Dynamic single-cell analysis is a very important and frontier research field of single-cell analysis. Microfluidic techniques have become new and effective tools for precise, high-throughput, automatic analysis of single-cell dynamic process. This review aims to give an overview of dynamic single-cell analysis methods based on microfluidic platforms, with emphasis on the recent developments of microfluidic devices and its application to real-time dynamic monitoring of the signal molecules release from single living cell with temporal and spatial resolution, dynamic gene expression in single cells, the cell death dynamic events at the level of a single cell, and direct cell—cell communication between individual cell pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu X, Huang WH, Wang ZL, Cheng JK (2004) Recent developments in single-cell analysis. Anal Chim Acta 510:127

    Article  CAS  Google Scholar 

  2. Andersson H, Van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15:44

    Article  CAS  Google Scholar 

  3. Martin RS, Root PD, Spence DM (2006) Microfluidic technologies as platforms for performing quantitative cellular analyses in an in vitro environment. Analyst 131:1197

    Article  CAS  Google Scholar 

  4. Di Carlo D, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918

    Article  Google Scholar 

  5. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403

    Article  CAS  Google Scholar 

  6. Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423

    Article  CAS  Google Scholar 

  7. Yan H, Zhang BY, Wu HK (2008) Chemical cytometry on microfluidic chips. Electrophoresis 29:1775

    Article  CAS  Google Scholar 

  8. Chao TC, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 5:S139

    Article  CAS  Google Scholar 

  9. Huang WH, Ai F, Wang ZL, Cheng JK (2008) Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B 866:104

    Article  CAS  Google Scholar 

  10. Spegel C, Heiskanen A, Skjolding DHL, Emneus J (2008) Chip based electroanalytical systems for cell analysis. Electroanalysis 20:680

    Article  CAS  Google Scholar 

  11. Bao N, Wang J, Lu C (2008) Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391:933

    Article  CAS  Google Scholar 

  12. Murad F (2006) Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003

    Article  CAS  Google Scholar 

  13. Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Kirino Y, Urano Y, Higuchi T, Nagoshi H, Hirata Y, Nagano T (2001) Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 73:1967

    Article  CAS  Google Scholar 

  14. Yang Q, Zhang XL, Bao XH, Lu HJ, Zhang WJ, Wu WH, Miao HN, Jiao BH (2008) Single cell determination of nitric oxide release using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1201:120

    Article  CAS  Google Scholar 

  15. Chen XX, Wang Y, Sheng SH (2008) A novel amperometric sensor for the determination of nitric oxide, and its application in rat liver cells. Microchim Acta 161:255

    Article  CAS  Google Scholar 

  16. Goto M, Sato K, Murakami A, Tokeshi M, Kitamori T (2005) Development of a microchip-based bioassay system using cultured cells. Anal Chem 77:2125

    Article  CAS  Google Scholar 

  17. Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129:995

    Article  CAS  Google Scholar 

  18. Oblak TA, Root P, Spence DM (2006) Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 78:3193

    Article  CAS  Google Scholar 

  19. Wang Y, Yin M (2009) Sensitive and rapid determination of nitric oxide in human serum using microchip capillary electrophoresis with laser-induced fluorescence detection. Microchim Acta 166:243

    Article  CAS  Google Scholar 

  20. Aspinwall CA, Lakey J, Kennedy RT (1999) Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem 274:6360

    Article  CAS  Google Scholar 

  21. Schultz NM, Huang L, Kennedy RT (1995) Capillary electrophoresis-based immunoassay to determine insulin content and insulin secretion from single islets of Langerhans. Anal Chem 67:924

    Article  CAS  Google Scholar 

  22. Roper MG, Shackman JG, Dahlgren GM, Kennedy RT (2003) Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal Chem 75:4711

    Article  CAS  Google Scholar 

  23. Shackman JG, Dahlgren GM, Petersa JL, Kennedy RT (2005) Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip 5:56

    Article  CAS  Google Scholar 

  24. Dishinger JF, Kennedy RT (2007) Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal Chem 79:947

    Article  CAS  Google Scholar 

  25. Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 81:3119

    Article  CAS  Google Scholar 

  26. Reid KR, Kennedy RT (2009) Continuous operation of microfabricis devices for 24 h and application to chemical monitoring of living cells. Anal Chem 81:6837

    Article  CAS  Google Scholar 

  27. Gee KR, Brown KA, Chen WN, Bishop-Stewart J (2000) Chemical and physiological characterization of fluo-4 Ca 2+-indicator dyes. Cell Calcium 27:97

    Article  CAS  Google Scholar 

  28. Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991

    Article  CAS  Google Scholar 

  29. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75:3581

    Article  CAS  Google Scholar 

  30. Zhang XL, Yin HB, Cooper JM, Haswell SJ (2006) A microfluidic-based system for analysis of single cells based on Ca2+ flux. Electrophoresis 27:5093

    Article  CAS  Google Scholar 

  31. Li XJ, Li PCH (2005) Microfluidic selection and retention of a single cardiac myocyte, on-Chip dye, loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Anal Chem 77:4315

    Article  CAS  Google Scholar 

  32. Li XJ, Huang JB, Tibbits GF, Li PCH (2007) Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery. Electrophoresis 28:4723

    Article  CAS  Google Scholar 

  33. Cai XX, Klauke N, Glidle A, Cobbold P, Smith GL, Cooper JM (2002) Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 74:908

    Article  CAS  Google Scholar 

  34. Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6:1424

    Article  CAS  Google Scholar 

  35. Stadman ER (1992) Protein oxidation and aging. Science 257:1220

    Article  Google Scholar 

  36. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I (2007) Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells. Lab Chip 7:233

    Article  CAS  Google Scholar 

  37. Gao N, Li Lu, Shi ZK, Zhang XL, Jin WR (2007) High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis 28:3966

    Article  CAS  Google Scholar 

  38. Sun Y, Yin XF, Ling YY, Fang ZL (2005) Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis. Anal Bioanal Chem 382:1472

    Article  CAS  Google Scholar 

  39. Zhua LL, Lu M, Yin XF (2008) Ultrasensitive determination of intracellular superoxide in individual HepG2 cells by microfluidic chip electrophoresis. Talanta 75:1227

    Article  Google Scholar 

  40. Chang SC, Rodrigues NP, Zurgil N, Henderson JR, Bedioui F, McNeil CJ, Deutsch M (2005) Simultaneous intra-and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system. Biochem Biophys Res Commun 327:979

    Article  CAS  Google Scholar 

  41. Getty-Kaushik L, Richard AMT, Corkey BE (2005) Free fatty acid regulation of glucose-dependent intrinsic oscillatory lipolysis in perifused isolated rat adipocytes. Diabetes 54:629

    Article  CAS  Google Scholar 

  42. Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT (2009) Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem 81:2350

    Article  CAS  Google Scholar 

  43. Gross P, Kartalov E, Scherer A, Weiner L (2007) Applications of microfluidics for neuronal studies. J Neurosci 252:135

    Google Scholar 

  44. Huang WH, Cheng W, Zhang Z, Pang DW, Cheng WZL, JK CDF (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76:483

    Article  CAS  Google Scholar 

  45. Spégel C, Heiskanen A, Acklid J, Wolff A, Taboryski R, Emnéus J, Ruzgas T (2007) On-Chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes. Electroanalysis 19:263

    Article  Google Scholar 

  46. Spégel C, Heiskanen A, Pedersen S, Emneus J, Ruzgas T, Taboryski R (2008) Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab Chip 8:323

    Article  Google Scholar 

  47. Sun XH, Gillis KD (2006) On-Chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Anal Chem 78:2521

    Article  CAS  Google Scholar 

  48. Chen XH, Gao YF, Hossain M, Gangopadhyay S, Gillis KD (2008) Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Lab Chip 8:161

    Article  CAS  Google Scholar 

  49. Shi BX, Huang WH, Cheng JK (2007) Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. Electrophoresis 28:1595

    Article  CAS  Google Scholar 

  50. Michelle WL, Martin RS (2008) Microchip-based integration of cell immobilization, electrophoresis, post-column derivatization, and fluorescence detection for monitoring the release of dopamine from PC 12 cells. Analyst 133:1358

    Article  Google Scholar 

  51. Matsubara Y, Murakami YJ, Kobayashi M, Morita Y, Tamiya E (2004) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19:741

    Article  CAS  Google Scholar 

  52. Tokuyama T, Fujii SI, Sato K, Abo M, Okubo A (2005) Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device. Anal Chem 77:3309

    Article  CAS  Google Scholar 

  53. Hall DA, Zhu H, Zhu XW, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482

    Article  CAS  Google Scholar 

  54. Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 76:4098

    Article  CAS  Google Scholar 

  55. Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084

    Article  CAS  Google Scholar 

  56. Ottesen EA, Hong JW, Quake SR, Leadbette JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464

    Article  CAS  Google Scholar 

  57. King KR, Wang SH, Irimia D, Jayaraman A, Tonerabd M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77

    Article  CAS  Google Scholar 

  58. Taylora RJ, Falconnet D, Niemisto A, Ramseya SA, Prinza S, Shmulevicha I, Galitskia T, Hansenb CL (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. PNAS 106:3758

    Article  Google Scholar 

  59. Qin JH, Ye NN, Liu X, Lin BG (2005) Microfluidic devices for the analysis of apoptosis. Electrophoresis 26:3780

    Article  CAS  Google Scholar 

  60. Chan SD, Luedke G, Valer M, Buhlmann C, Preckel T (2003) Cytometric analysis of protein expression and apoptosis in human primary cells with a novel microfluidic chip-based system. Cytometry 55A:119

    Article  CAS  Google Scholar 

  61. Qin JH, Ye NN, Yu LF, Liu DY, Wang W, Ma XJ, Lin BC (2005) Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis. Electrophoresis 26:1155

    Article  CAS  Google Scholar 

  62. Tabuchi M, Baba Y (2004) Self-contained on-Chip cell culture and pretreatment system. J Proteome Res 3:871

    Article  CAS  Google Scholar 

  63. Tamaki E, Sato K, Tokeshi M, Aihara M, Kitamori T (2002) Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal Chem 74:1560

    Article  CAS  Google Scholar 

  64. Kleparnik K, Horky M (2003) Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device. Electrophoresis 24:3778

    Article  CAS  Google Scholar 

  65. Ye NN, Qin JH, Liu X, Shi WW, Lin BC (2007) Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device. Electrophoresis 28:1146

    Article  CAS  Google Scholar 

  66. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5:49

    Article  CAS  Google Scholar 

  67. Munoz-Pinedo C, Green DR, van den Berg A (2005) Confocal restricted-height imaging of suspension cells (CRISC) in a PDMS microdevice during apoptosis. Lab Chip 5:628

    Article  CAS  Google Scholar 

  68. Wlodkowic D, Skommer J, Faleya S, Darzynkiewicz Z, Cooper JM (2009) Dynamic analysis of apoptosis using cyanine SYTO probes: From classical to microfluidic cytometry. Exp Cell Res 315:1706

    Article  CAS  Google Scholar 

  69. Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM (2009) Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal Chem 81:5517

    Article  CAS  Google Scholar 

  70. Wlodkowic D, Skommer J, McGuinness D, Faley S, Kolch W, Darzynkiewicz Z, Cooper JM (2009) Chip-based dynamic real-time quantification of drug-induced cytotoxicity in human tumor cells. Anal Chem 81:6952

    Article  CAS  Google Scholar 

  71. Hirokazu K, Matsuhiko N, Tomokazu M (2003) Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows. Lab Chip 3:208

    Article  Google Scholar 

  72. Lee PJ, Hung PJ, Shaw R, Jan L, Lee LP (2005) Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Appl Phys Lett 86:223902

    Article  Google Scholar 

  73. Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389

    Article  CAS  Google Scholar 

  74. Klauke N, Smith G, Cooper JM (2007) Microfluidic systems to examine intercellular coupling of pairs of cardiac myocytes. Lab Chip 7:731

    Article  CAS  Google Scholar 

  75. Faley S, Seale K, Hughey J, Schaffer DK, Compernolle SV, McKinney B, Baudenbacher F, Unutmaz D, Wikswo JP (2008) Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip 8:1700

    Article  CAS  Google Scholar 

  76. Kirschbaum M, Jaeger MS, Duschl C (2009) Correlating short-term Ca2+ responses with long-term protein expression after activation of single T cells. Lab Chip 9:3517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this manuscript was supported by Shandong Province Natural Science Foundation (No.Y2006B28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Chen, Zz. & Li, Ql. Microfluidic techniques for dynamic single-cell analysis. Microchim Acta 168, 177–195 (2010). https://doi.org/10.1007/s00604-010-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0296-2

Keywords

Navigation