Skip to main content
Log in

Phthalocyanine macrocycle as stabilizer for gold and silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A one-step process was used for the preparation of gold and silver nanoparticles stabilized by an aminophthalocyanine macrocycle. The resultant nanoparticles were characterized by absorption spectra, infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The nanoparticles were found to possess relatively narrow size distribution. The gold nanoparticles have an average diameter of ~2 nm, while silver particles have 4–5 nm. Preliminary studies on fluorescence and surface enhanced Raman spectroscopy were carried out using these nanoparticles. Fluorescence studies indicate that gold nanoparticles do not quench the fluorescence, while silver nanoparticles do. The stabilized nanoparticles showed enhancement of the Raman signals, thus revealing that they are good substrates for surface enhanced Raman scattering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffman AJ, Mills G, Yee H, Hoffman MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J PhysChem 96:5546–5552

    CAS  Google Scholar 

  2. Mukherjee P, Patra CR, Ghosh A et al (2002) Characterization and catalytic activity of gold nanoparticles synthesized by autoreduction of aqueous chloroaurate ions with fumed silica. Chem Mater 14:1678–1684

    Article  CAS  Google Scholar 

  3. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370:354–357

    Article  CAS  Google Scholar 

  4. Baschong W, Wrigley NG (1990) Small colloidal gold conjugated to Fab fragments or to immunoglobulin G as high-resolution labels for electron microscopy: a technical overview. J Electron Microsc Tech 14:313–323

    Article  CAS  Google Scholar 

  5. Shao M, Lu L, Wang H, Luo S, Ma DD (2009) Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim Acta 164:157–160

    Article  CAS  Google Scholar 

  6. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  7. Weisbecker CS, Merritt MV, Whitesides GM (1996) Molecular self-assembly of aliphatic thiols on gold colloids. Langmuir 12:3763–3772

    Article  CAS  Google Scholar 

  8. Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc 120:1906–1911

    Article  CAS  Google Scholar 

  9. Mayya KS, Patil V, Sastry M (1997) On the stability of carboxylic acid derivatized gold colloidal particles: the role of colloidal solution pH studied by optical absorption spectroscopy. Langmuir 13:3944–3947

    Article  CAS  Google Scholar 

  10. Tan Y, Li Y, Zhu D (2002) Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 18:3392–3395

    Article  CAS  Google Scholar 

  11. Liu J, Mendoza S, Roman E et al (1999) Cyclodextrin-modified gold nanospheres. host-guest interactions at work to control colloidal properties. J Am Chem Soc 121:4304–4305

    Article  CAS  Google Scholar 

  12. Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38

    Article  CAS  Google Scholar 

  13. Selvakannan PR, Mandal S, Pasricha R et al (2002) One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid–liquid interface. Chem Commun 13:1334–1335

    Article  Google Scholar 

  14. Pradeep T, Mitra S, Nair AS, Mukhopadhyay R (2004) Dynamics of alkyl chains in monolayer-protected Au and Ag clusters and silver thiolates: a comprehensive quasielastic neutron scattering investigation. J Phys Chem B 108:7012–7020

    Article  CAS  Google Scholar 

  15. Hone DC, Walker PI, Gowing RE et al (2002) Generation of cytotoxic singlet oxygen via Phthalocyanine-stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987

    Article  CAS  Google Scholar 

  16. Ding H, Zhang X, Ram MK, Nicolini C (2005) Ultrathin films of tetrasulfonated copper phthalocyanine-capped titanium dioxide nanoparticles: fabrication, characterization, and photovoltaic effect. J Colloid Interface Sci 290:166–171

    Article  CAS  Google Scholar 

  17. Zhang X, Wang Y, Ma Y et al (2006) Solvent-stabilized oxovanadium Phthalocyanine nanoparticles and their application in xerographic photoreceptors. Langmuir 22:344–348

    Article  Google Scholar 

  18. Nitschke C, O’Flaherty SM, Kroll M, Blau WJ (2004) Material investigations and optical properties of phthalocyanine nanoparticles. J Phys Chem B 108:1287–1295

    Article  CAS  Google Scholar 

  19. Karan S, Mallik B (2007) Templating effects and optical characterization of copper(II) phthalocyanine nanocrystallites thin film: nanoparticles, nanoflowers, nanocabbages, and nanoribbons. J Phys Chem C 111(20):7352–7365

    Article  CAS  Google Scholar 

  20. Chao W, Zhang X, Xiao C, Liang D, Wang Y (2008) An excellent single-layered photoreceptor composed of oxotitanium phthalocyanine nanoparticles and an insulating resin. J Colloid Interface Sci 325:198–202

    Article  CAS  Google Scholar 

  21. Imahori H, Kashiwagi Y, Hanada T et al (2003) Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters. J Mat Chem 13:2890–2898

    Article  CAS  Google Scholar 

  22. Scott RWJOM, Wilson CRM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  23. Shi X, Ganser TR, Sun K, Balogh LP, Baker JR Jr (2006) Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 17:1072–1078

    Article  CAS  Google Scholar 

  24. Achar BN, Lokesh KS (2004) Studies on tetra-amine phthalocyanines. J Organomet Chem 689:3357–3361

    Article  CAS  Google Scholar 

  25. Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc, Faraday Trans 87:3881–3891

    Article  CAS  Google Scholar 

  26. Shinobu F, Keita K, Eiji H (2005) Nanoparticulate porous films for electrochemical device applications. Electrochemistry 133–157

  27. Macaskill A, Chernonosov AA, Koval VV, Lukyanets EA, Fedorova OS, Smith WE, Faulds K, Graham D (2007) Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides. Nucleic Acids Res 35:e42/1–e42/6

    Article  CAS  Google Scholar 

  28. Ha JS, Yoon M, Lee M, Jang DJ, Kim D (1991) Surfactant-aided surface enhanced Raman scattering of Ni(II) tetrasulphonate phthalocyanine in silver sol. J Raman Spectrosc 22:597–600

    Article  CAS  Google Scholar 

  29. Liu YC (2002) Evidence of chemical effect on surface-enhanced raman scattering of polypyrrole films electrodeposited on roughened gold substrates. Langmuir 18:174–181

    Article  CAS  Google Scholar 

  30. Lucht S, Murphy T, Schmidt H, Kronfeldt HD (2000) Optimized recipe for sol-gel-based SERS substrates. J Raman Spectrosc 31:1017–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge DST, CSIR, New Delhi, for financial assistance. K S Lokesh thanks the CSIR, New Delhi, for a Research Associateship. The authors thank Prof. B.N. Achar, University of Mysore, India for a gift sample of cobalttetrasulfo phthalocyanine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koodlur Sannegowda Lokesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supporting information (DOC 2300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lokesh, K.S., Narayanan, V. & Sampath, S. Phthalocyanine macrocycle as stabilizer for gold and silver nanoparticles. Microchim Acta 167, 97 (2009). https://doi.org/10.1007/s00604-009-0226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-009-0226-3

Keywords

Navigation