Skip to main content
Log in

Fast and sensitive non-enzymatic glucose concentration determination using an electroactive anionic clay-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Layers of Ni-Al-NO3 layered double hydroxides were deposited on a gold electrode by electrosynthesis and applied in a low-cost non-enzymatic glucose sensor possessing high sensitivity and long-term stability. The amperometric current of the electrode is proportional to the concentration of glucose over the range of 0.0007–1.2 mM, the detection limit being 0.5 μM (at an S/N = 3). The electrode has been applied to determine glucose in glucose injection solutions, wine and urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark JLC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad Sci 102:29

    Article  CAS  Google Scholar 

  2. Zhao J, Wang F, Yu JJ, Hu SS (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449

    Article  CAS  Google Scholar 

  3. Wang LY, Li YD (2007) Luminescent nanocrystals for nonenzymatic glucose concentration determination. Chem Eur J 13:4203

    Article  CAS  Google Scholar 

  4. Zeng J, Wei W, Liu X, Wang Y, Luo G (2008) A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly(1, 2-diaminobenzene) based glucose biosensor. Microchim Acta 160:261

    Article  CAS  Google Scholar 

  5. Qiu JD, Zhou WM, Guo J, Wang R, Liang RP (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264

    Article  CAS  Google Scholar 

  6. Zhang QF, Chen C, Xie QJ, Liu PJ (2009) Electrodeposition of a biocompatible hydroxyapatite matrix to immobilize glucose oxidase for sensitive glucose biosensing. Microchim Acta 165:223

    Article  CAS  Google Scholar 

  7. Scampicchio A, Ballabio D, Arecchi M, Cosio SM, Mannino S (2008) Amperometric electronic tongue for food analysis. Microchim Acta 163:11

    Article  CAS  Google Scholar 

  8. Agui L, Yanez-Sedeno P, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry: A review. Anal Chim Acta 622:11

    Article  Google Scholar 

  9. Liu JM, Xu LY, Hu SR, Wei L, Yang TL, Zhu GH, Huang XM, Li ZM, Chen XH (2008) Determination of glucose by affinity adsorption solid substrate-room temperature phosphorimetry based on concanavalin agglutinin labeled with fluorescein using 1.5-generation dendrimers as sensitizer. Microchim Acta 161:217

    Article  CAS  Google Scholar 

  10. Jena BK, Raj CR (2006) Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J 12:2702

    Article  CAS  Google Scholar 

  11. Zhang ZJ, Shu XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126

    Article  Google Scholar 

  12. Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 39:4041

    Article  Google Scholar 

  13. Li F, Wang Y, Yang Q, Evans DG, Forano C, Duan X (2005) Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. J. Hazard Mater. 125:89

    Article  CAS  Google Scholar 

  14. He FA, Zhang LM (2007) Organo-modified ZnAl layered double hydroxide as new catalyst support for the ethylene polymerization. J Colloid Interf Sci 315:439

    Article  CAS  Google Scholar 

  15. Shan D, Cosnier S, Mousty C (2007) Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem 75:3872

    Article  Google Scholar 

  16. Braterman P S, Xu Z P, Yarberry F (2004) in: Auerbach S M, Carrada K A, Dutta P K (Eds.), Handbook of Layered Materials. Marcel Dekker, New York, p. 373–474.

  17. Melo JVD, Cosnier S, Mousty C, Martelet C, Renault NJ (2002) Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides). Anal Chem 74:4037

    Article  Google Scholar 

  18. Scavetta E, Ballarin B, Berrettoni M, Carpani I, Giorgetti M, Tonelli D (2006) Electrochemical sensors based on electrodes modified with synthetic hydrotalcites. Electrochim Acta 51:2129

    Article  CAS  Google Scholar 

  19. Chen X, Fu CL, Wang Y, Yang WS, Evans DG (2008) Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets. Biosens Bioelectron 24:356

    Article  CAS  Google Scholar 

  20. Mignani A, Luciano G, Lanteri S, Leardi R, Scavetta E, Tonelli D (2007) Optimization of a glucose biosensor setup based on a Ni/Al HT matrix. Anal Chim Acta 599:36

    Article  CAS  Google Scholar 

  21. Ai HH, Huang XT, Zhu ZH, Liu JP, Chi QB, Li YY, Li ZK, Ji XX (2008) A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Biosens Bioelectron 24:1048

    Article  CAS  Google Scholar 

  22. Scavetta E, Mignani A, Prandstraller D, Tonelli D (2007) Electrosynthesis of thin films of Ni, Al hydrotalcite like compounds. Chem Mater 19:4523

    Article  CAS  Google Scholar 

  23. Laviron E (1979) The use of linear potential sweep voltammetry and of AC voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Eelctroanal Chem 100:263

    Article  CAS  Google Scholar 

  24. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Eelctroanal Chem 101:19

    Article  CAS  Google Scholar 

  25. Li CC, Liu YL, Li LM, Du ZF, Xu SJ, Zhang M, Yin XM, Wang TH (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77:455

    Article  CAS  Google Scholar 

  26. Zheng L, Zhang JQ, Song JF (2009) Ni(II)-quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim Acta 54:4559

    Article  CAS  Google Scholar 

  27. Liu Y, Teng H, Hou HQ, You TY (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329

    Article  CAS  Google Scholar 

  28. Pezzaniti JL, Jeng TW, McDowell L, Oosta GM (2001) Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clin Biochem 34:239

    Article  CAS  Google Scholar 

  29. Vivarès D, Bonneté F (2004) Liquid-liquid phase separations in urate oxidase/PEG mixtures: characterization and implications for protein crystallization. J Phys Chem B 108:6498

    Article  Google Scholar 

  30. Bergmeyer HU, Bernt E (1974) Methods of Enzymatic Analysis, 2nd edn. Academic, New York, pp 1205–1212

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (20801001, and 20875001), and the Science Foundation of Education Committee of Anhui Province (KJ2007B098). We also deeply appreciate the support of the foundation for doctor science research of Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maoguo Li or Lun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 774 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Xu, S., Ni, F. et al. Fast and sensitive non-enzymatic glucose concentration determination using an electroactive anionic clay-modified electrode. Microchim Acta 166, 203–208 (2009). https://doi.org/10.1007/s00604-009-0189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0189-4

Keywords

Navigation