Skip to main content
Log in

Nanosilver and DNA-functionalized immunosensing probes for electrochemical immunoassay of alpha-fetoprotein

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple and sensitive electrochemical immunosensor for a one-step immunoassay for alpha-fetoprotein (AFP) was designed using silver nanoparticles and double-stranded DNA as matrices. The detection was based on the change in the electron transfer resistance before and after the antigen-antibody reaction by using electrochemical impedance spectroscopy. Under optimal conditions, the resistance shift of the immunosensor is proportional to the AFP concentration in the range 3.5 –360 ng·mL−1 with a detection limit of 1.5 ng·mL−1 (at 3σ). The immunosensor exhibits high sensitivity, good reproducibility and stability. Results obtained for clinical serum samples by the immunosensor are in accordance with those determined by spectrophotometric enzyme-linked immunosorbent assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang L, Gan X (2009) Antibody-functionalized magnetic nanoparticles for electrochemical immunoassay of α-1-fetoprotein in human serum. Microchim Acta 164:231–237

    Article  CAS  Google Scholar 

  2. Tang D, Ren J (2008) In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal Chem 80:8065–8070

    Google Scholar 

  3. Zacco E, Adrian J, Galve R, Marco MP, Alegret S, Pividori MI (2007) Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens Bioelectron 22:2184–2191

    Article  CAS  Google Scholar 

  4. Zhang J, Wang J, Zhu J, Xu J, Chen H, Xu D (2008) An electrochemical impedimetric arrayed immunosensor based on indium tin oxide electrodes and silver-enhanced gold nanoparticles. Microchim Acta 163:63–67

    Article  CAS  Google Scholar 

  5. Orazem M, Tribollet B (2008) An integrated approach to electrochemical impedance spectroscopy. Electrochim Acta 53:7360–7366

    Article  CAS  Google Scholar 

  6. Kiel M, Bohlen O, Sauer D (2008) Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochim Acta 53:7367–7374

    Article  CAS  Google Scholar 

  7. Geng P, Zhang X, Meng W, Wang Q, Zhang W, Jin L, Feng Z, Wu X (2008) Self-assembled monolyers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim Acta 53:4663–4668

    Article  CAS  Google Scholar 

  8. Tang D, Yuan R, Chai Y, Dai J, Zhong X, Liu Y (2004) A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy. Bioeletrochemistry 65:15–22

    Article  CAS  Google Scholar 

  9. Hnaien M, Diouani M, Helali S, Hafaid I, Hassen W, Renault N, Ghram A, Abdelghani A (2008) Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochem Eng J 39:443–449

    Article  CAS  Google Scholar 

  10. Bart M, Stigter E, Stapert H, de Jong G, van Bennekom WP (2005) On the response of a label-free interferon-gamma immunosensor utilizing electrochemical impedance spectroscopy. Biosens Bioelectron 21:49–59

    Article  CAS  Google Scholar 

  11. La Belle J, Bhavsar K, Fairchild A, Das A, Sweeney J, Alford T, Wang J, Bhavanandan V, Joshi L (2007) Cytokine immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens Bioelectron 23:428–431

    Article  Google Scholar 

  12. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saikali Y, Vittori O, Errachid A, Cloarec JP, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance. Anal Chem 79:4879–4886

    Article  CAS  Google Scholar 

  13. Huang HZ, Liu ZG, Yang XR (2006) Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization method. Anal Biochem 356:208–214

    Article  CAS  Google Scholar 

  14. Nann T (2008) (Primarily semiconducting) nanocrystals: from fundamental research to electro-optical devices and biosensors. Microchim Acta 160:297–298

    Article  CAS  Google Scholar 

  15. Liu Y, Hu L, Yang Q (2008) Amplification of bioelectrocatalytic signaling based on silver nanoparticles and DNA-derived horseradish peroxidase biosensors. Microchim Acta 160:357–365

    Article  CAS  Google Scholar 

  16. Fang B, Gao Y, Li M, Wang G, Li Y (2004) Application of functionalized Ag nanoparticles for the determination of proteins at nanogram levels using the resonance light scatting method. Microchim Acta 147:81–86

    Article  CAS  Google Scholar 

  17. Smitha B, Sridhar S, Khan A (2005) Chitosan-sodium alginate polyion complexes as fuel cell membranes. Eur Polymer J 41:1859–1866

    Article  CAS  Google Scholar 

  18. Labuda J, Ovadekova R, Galandova J (2008) DNA-based biosensor for the detection of strong damage of DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164:371–377

    Article  Google Scholar 

  19. Huang J, Chen F, He Z (2007) A resonance light scatting method for determination of DNA using Ru(bpy) 2PIP(V) 2+. Microchim Acta 157:181–187

    Article  CAS  Google Scholar 

  20. Billah M, Hays H, Millner P (2008) Development of a myoglobin impedimetric immunosensor based on mixed self-assembled monolayer onto gold. Microchim Acta 160:447–454

    Article  CAS  Google Scholar 

  21. Dorielle P, Abdur Rub Abadur R, Shekhar B (2009) Design rule of optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosens Bioelectron 24:2071–2076

    Article  Google Scholar 

  22. Tang D, Yuan R, Chai Y (2006) Magnetic Ag@Fe3O4 nanoparticle-coating carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay. J Phys Chem B 110:11640–11646

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supports from the NNSF of China and the NSF of Yuzhong District, Chongqing, China are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolin Ma or Lianyang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Yao, Y., Wang, T. et al. Nanosilver and DNA-functionalized immunosensing probes for electrochemical immunoassay of alpha-fetoprotein. Microchim Acta 166, 83–88 (2009). https://doi.org/10.1007/s00604-009-0174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0174-y

Keywords

Navigation