Skip to main content
Log in

Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Stripping voltammetry analysis using a hemispheroidal mercury microelectrode has been previously assessed theoretically as a possible candidate ‘primary method’ for amount of substance measurement. It was shown that the measurement methodology can be described completely by a set of measurement equations when a novel quantification process is employed to measure the steady-state diffusion-limited deposition current over an optimum sampling time, instead of employing an analyte stripping step. The corollary is that, for solutions of known composition, the method may be used for highly accurate determination of diffusion coefficients. This investigation uses experimental data from steady-state diffusion-limited current measurements with sampling periods optimised using Allan deviation techniques, together with a full uncertainty analysis to estimate feasibility and likely accuracy of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown RJC, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. TrAC 24:266–274

    CAS  Google Scholar 

  2. Brown RJC, Shaw MC, Roberts MR (2006) Practical methodology for the solubility speciation analysis of ambient dust deposits for heavy metals: application to a 6-month measurement campaign. Int J Environ Anal Chem 86:453–460

    Article  CAS  Google Scholar 

  3. Brown RJC, Milton MJT (2007) Developments in accurate and traceable chemical measurements. Chem Soc Rev 36:904–913

    Article  CAS  Google Scholar 

  4. Brown RJC, Roberts MR, Milton MJT (2007) Systematic error arising from ‘sequential’ standard addition calibrations: quantification and correction. Anal Chimica Acta 587:158–163

    Article  CAS  Google Scholar 

  5. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods and applications. OUP, Oxford

    Google Scholar 

  6. Wightman RM, Wipf DO (1989) Voltammetry at ultramicroelectrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol. 15. Marcel Dekker, New York, pp 267–354

    Google Scholar 

  7. Brown RJC, Milton MJT (2007) Stripping voltammetry as a possible primary method for amount of substance. IEEE Trans Instrum Meas 56:280–284

    Article  Google Scholar 

  8. Milton MJT, Quinn TJ (2001) Primary methods for the measurement of amount of substance. Metrologia 38:289–296

    Article  CAS  Google Scholar 

  9. Myland JC, Oldham KB (1990) Diffusion limited currents at hemispherical microelectrodes. J Electroanal Chem 288:1–14

    Article  CAS  Google Scholar 

  10. Colyer CL, Luscombe D, Oldham KB (1990) Growth of mercury electrodeposits on an inlaid disc: voltammetric theory and experiments. J Electroanal Chem 283:379–387

    Article  CAS  Google Scholar 

  11. Daniele S, Mazzocchin GA (1993) Stripping analysis at mercury microelectrodes in the absence of supporting electrolyte. Anal Chimica Acta 273:3–11

    Article  CAS  Google Scholar 

  12. Abdelsalam ME, Denuault G, Daniele S (2002) Calibrationless determination of cadmium, lead and copper in rain samples by stripping voltammetry at mercury microelectrodes—effect of natural convection on the deposition step. Anal Chimica Acta 452:65–75

    Article  CAS  Google Scholar 

  13. Baldo MA, Daniele S, Corbetta M, Mazzocchin GA (1995) Performance of platinum-based spherical mercury microelectrodes in cyclic voltammetry and stripping analysis. Electroanalysis 7:980–986

    Article  CAS  Google Scholar 

  14. Witt TJ (2003) Experimental sampling distributions and confidence intervals of the Allan variance in some DC electrical measurements. IEEE Trans Instrum Meas 52:487–490

    Article  Google Scholar 

  15. Ikeuchi H, Kanakubo M, Watanabe Y, Naito T, Sato GP (2004) Chronoamperometric determination of diffusion coefficients under microgravity conditions. J Electroanal Chem 562:105–110

    Article  CAS  Google Scholar 

  16. Ikeuchi H, Kawai Y, Oda Y, Sato GP (1991) Determination of diffusion coefficients by means of normal pulse voltammetry with a stationary disk electrode. Anal Sci 7:389–392

    Article  CAS  Google Scholar 

  17. Ikeuchi H, Uchida H, Sato GP (1990) Determination of diffusion coefficients by means of normal pulse polarography. Anal Sci 6:239–243

    Article  CAS  Google Scholar 

  18. Ikeuchi H, Sato GP (1997) Electrochemistry under microgravity conditions. 2. Precise measurement of diffusion coefficient. Denki Kagaku 65:174–179

    Google Scholar 

  19. Wachter P, Schreiner C, Zistler M, Gerhard D, Wasserscheid P, Gores HJ (2008) A microelectrode study of triiodide diffusion coefficients in mixtures of room temperature ionic liquids, useful for dye-sensitised solar cells. Microchimica Acta 160:125–133

    Article  CAS  Google Scholar 

  20. Baldo MA, Bragato C, Daniele S (1997) Determination of lead and copper in wine by anodic stripping voltammetry with mercury microelectrodes: assessment of the influence of sample pretreatment procedures. Analyst 122:1–5

    Article  CAS  Google Scholar 

  21. Mohr PJ, Taylor BN (2005) CODATA recommended values of the fundamental physical constants: 2002. Rev Mod Phys 77:1–107

    Article  CAS  Google Scholar 

  22. Samuel GL, Shunmugam MS (2003) Evaluation of circularity and sphericity from coordinate measurement data. J Mat Processing Tech 139:90–95

    Article  Google Scholar 

  23. Turk GC, Winchester MR, Butler TA (2005) CCQM-P46 on the preparation of elemental solutions: presentation to the CCQM Inorganic Analysis Working Group. BIPM, Paris

    Google Scholar 

  24. Bettin H, Krumscheid H (1999) New apparatus for measuring the density of mercury. Metrologia 36:547–550

    Article  Google Scholar 

  25. Wieser ME (2006) Atomic weights of the elements 2005. Pure Appl Chem 78:2051–2066

    Article  CAS  Google Scholar 

  26. Lobo VMM, Quaresman JL (1989) Handbook of electrolyte solutions, in physcial science data, ser. 41. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  27. Lide DR (2002) CRC handbook of chemistry and physics, 82th edn. CRC, Boca Raton

    Google Scholar 

  28. Hulanicki A (1995) Absolute methods in analytical chemistry. Pure Appl Chem 67:1905–1911

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Alistair Forbes (NPL) for providing numerical solutions to Eq. 3, and to NPL’s Exploratory Strategic Research Programme for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. C. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R.J.C., Brett, D.J.L. Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients. Microchim Acta 164, 337–344 (2009). https://doi.org/10.1007/s00604-008-0062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0062-x

Keywords

Navigation