Skip to main content

Advertisement

Log in

Rock Slope Stability Analysis Incorporating the Effects of Intermediate Principal Stress

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an analytical approach for assessing rock slope stability based on a three-dimensional (3D) Hoek–Brown (HB) criterion to consider the effects of intermediate principal stress. The 3D HB criterion, considering an associate flow rule, is utilized to describe the perfectly plastic behavior of rock mass under a plane strain condition. To reflect the change of friction angle on the failure surface, the potential failure surface (PFS) is divided into small segments with each segment being assigned a unique friction angle. The upper bound theorem of limit analysis is combined with the strength reduction method to determine the factor of safety (FOS) of a rock slope with a defined PFS. By optimizing the PFS, the minimum FOS and the critical failure surface (CFS) of the rock slope are obtained by the customized genetic algorithm. The proposed approach is validated by comparing it with an HB criterion-based solution and numerical simulations. Parametric studies are also performed to investigate the effects of rock mass properties, slope geometry, and loading conditions on the FOS and CFS. The results indicate that ignoring the 3D strength of rock leads to underestimation of FOS and it is important to consider the various factors when evaluating the stability of a rock slope. For the effortless application of the proposed approach, a Python-based graphical-user-interface application is developed as a stand-alone executable app and is successfully applied to analyze a rock slope.

Highlights

  • Three dimensional (3D) Hoek-Brown criterion is applied to analyze rock slope stability

  • Customized-genetic algorithm is utilized to accelerate finding most critical condition

  • Ignoring 3D strength of rock mass leads to underestimation of the factor of safety for a rock slope

  • Graphical-user-interface app was developed using Python for effortless application of the proposed approach

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(\overrightarrow{{n}_{\mathrm{i}}}\) :

Normal unit vector on the failure surface

\({\mathrm{FOS}}_{\mathrm{lb}}\), \({\mathrm{FOS}}_{\mathrm{ub}}\) :

Lower and upper bounds of FOS

\({D}_{\mathrm{in}}\) :

Dissipation rate of internal plastic work

\({D}_{\mathrm{in}.\mathrm{r}}\) :

Dissipation rate of the required stresses

\({I}_{1}^{*}\), \({I}_{2}^{*}\), \({I}_{3}^{*}\) :

Modified first, second and third stress invariants

\(\overrightarrow{T}\), \(\overrightarrow{X}\), \(\overrightarrow{v}\) :

Traction force vector on boundary; body force vector; velocity vector

\({W}_{\mathrm{ex}}\) :

Work rate of external loads

\({c}_{1}\), \({c}_{2}\), \({c}_{3}\) :

Constants defining the relation between \({\phi }_{\mathrm{tr}}\) and \(\theta\)

\({c}_{\mathrm{t}}\) :

Instantaneous cohesion of rock mass

\({f}_{\mathrm{NMGZZ}}\) :

Failure surface of the newly modified GZZ criterion

\({k}_{\mathrm{v}}\), \({k}_{\mathrm{h}}\) :

Vertical and horizontal seismic coefficients

\({m}_{\mathrm{b}}\) :

Constant parameter of rock mass

\({m}_{\mathrm{i}}\) :

Constant parameter of intact rock

\({n}_{\mathrm{pop}}\) :

Population of each generation in the genetic algorithm

\({q}_{\mathrm{d}}\) :

Deviatoric shear stress

\({r}_{\mathrm{a}}\) :

Radius of the failure surface on the top of the slope

\({r}_{\mathrm{f}}\) :

Failure surface determined by \({\phi }_{\mathrm{t}}\)

\({r}_{\mathrm{fr}}\) :

Failure surface determined by \({\phi }_{\mathrm{tr}}\)

\({r}_{\mathrm{s}}\) :

Polar function of the slope surface

\({x}_{\mathrm{c}}\), \({z}_{\mathrm{c}}\) :

Horizontal and vertical coordinates of the center of rotation

\({x}_{\mathrm{t}}\) :

Horizontal distance from slope toe

\({\gamma }_{\mathrm{rm}}\) :

Unit weight of rock mass

\({\varepsilon }_{y0}\) :

Initial strain of rock mass in the out-of-plane direction

\({\theta }_{\mathrm{a}}\), \({\theta }_{\mathrm{o}}\), \({\theta }_{\mathrm{b}}\) :

Polar coordinates of the failure surface at points A, O, B (top, corner, and toe)

\({\mu }_{\mathrm{rm}}\) :

Poisson’s ratio of rock mass

\({\phi }_{\mathrm{t}}\) :

Tangential friction angle of rock mass on the failure surface

\({\sigma }_{1}\), \({\sigma }_{2}\), \({\sigma }_{3}\) :

Major, intermediate, and minor effective principal stresses

\({\sigma }_{1}^{*}\), \({\sigma }_{2}^{*}\), \({\sigma }_{3}^{*}\) :

Modified major, intermediate, and minor effective principal stresses

\({\sigma }_{\mathrm{c}}\) :

Unconfined compressive strength of intact rock

\({\sigma }_{\mathrm{ij}}\) :

Stress tensor

\({\sigma }_{\mathrm{ijr}}\) :

Required \({\sigma }_{\mathrm{ij}}\) for stability

\({\sigma }_{\mathrm{n}}\), \(\tau\) :

Normal stress and shear stress

\({\sigma }_{\mathrm{v},\mathrm{ b}}\) :

Vertical stress at the toe of the slope

\({\sigma }_{x}\), \({\sigma }_{y}\), \({\sigma }_{z}\) :

Normal stresses in the horizontal, out-of-plane, and vertical directions

\({\sigma }_{x0}\), \({\sigma }_{y0}\), \({\sigma }_{z0}\) :

Initial values of \({\sigma }_{x}\), \({\sigma }_{y}\) and \({\sigma }_{z}\)

\({\tau }_{\mathrm{r}}\), \({c}_{\mathrm{tr}}\), \({\phi }_{\mathrm{tr}}\) :

Required values of \(\tau\), \({c}_{\mathrm{t}}\) and \({\phi }_{\mathrm{t}}\) for stability

\(\mathrm{FOS}\) :

Factor of safety

\(\mathrm{GSI}\) :

Geology strength index

\(D\) :

Disturbance factor representing the effects of construction methods

\(H\) :

Height of slope

\(S\), \(V\), \(F\) :

Boundary surface, volume, and failure surface of kinematic failure mechanism

\(a\) :

Constant parameter of intact rock and rock mass

\(n\) :

Number of segments constituting the failure surface

\(q\) :

Load on the top of the slope

\(s\) :

Constant parameter of intact rock and rock mass

\(\alpha\) :

Slope angle at the toe of the slope

\(\beta\) :

Inclination of the top of the slope

\(\theta\) :

Polar angle measured clockwise from the positive x-direction

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1

Details of Eq. (10)

$$\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {\sigma }_{i}^{*}}=\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {I}_{1}^{*}}+\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {q}_{\mathrm{d}}}\frac{3{\sigma }_{i}^{*}-{I}_{1}^{*}}{2{q}_{\mathrm{d}}}+\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {I}_{3}^{*}}\frac{{I}_{3}^{*}}{{\sigma }_{i}^{*}};i=\mathrm{1,2},3$$
(A1a)
$$\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {I}_{1}^{*}}=\left[{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{2/a-2}+{m}_{\mathrm{b}}{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{1/a-1}\right]\frac{3{I}_{1}^{*2}-{q}_{\mathrm{d}}^{2}}{3}$$
(A1b)
$$\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {q}_{\mathrm{d}}}=-\left[{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{2/a-2}+{m}_{\mathrm{b}}{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{1/a-1}\right]\frac{2{q}_{\mathrm{d}}{I}_{1}^{*}}{3}+\left[\frac{2-2a}{a}{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{2/a-2}+{m}_{\mathrm{b}}\frac{1-a}{a}{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{1/a-1}\right]\left(\frac{{I}_{1}^{*3}-{I}_{1}^{*}{q}_{\mathrm{d}}^{2}}{3{q}_{\mathrm{d}}}-\frac{9{I}_{3}^{*}}{{q}_{\mathrm{d}}}\right)$$
(A1c)
$$\frac{\partial {f}_{\mathrm{NMGZZ}}}{\partial {I}_{3}^{*}}=-9\left[{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{2/a-2}+{m}_{\mathrm{b}}{\left(\frac{{q}_{\mathrm{d}}}{{\sigma }_{\mathrm{c}}}\right)}^{1/a-1}\right]-2{m}_{\mathrm{b}}^{2}$$
(A1d)

Appendix 2

Details of Eq. (15)

Considering the failure surface in Fig. 2

$${\int }_{{\theta }_{0}}^{{\theta }_{\mathrm{b}}}{\int }_{{r}_{\mathrm{s}}}^{{r}_{\mathrm{fr}}}{r}^{2}\mathrm{cos}\theta \mathrm{d}r\mathrm{d}\theta ={\int }_{{\theta }_{0}}^{{\theta }_{\mathrm{b}}}\frac{{r}_{\mathrm{fr}}^{3}}{3}\mathrm{cos}\theta \mathrm{d}\theta -{\int }_{{\theta }_{\mathrm{a}}}^{{\theta }_{\mathrm{o}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{cos}\theta \mathrm{d}r\mathrm{d}\theta -{\int }_{{\theta }_{\mathrm{o}}}^{{\theta }_{\mathrm{b}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{cos}\theta \mathrm{d}r\mathrm{d}\theta$$
(A1)
$${\int }_{{\theta }_{\mathrm{a}}}^{{\theta }_{\mathrm{o}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{cos}\theta \mathrm{d}r\mathrm{d}\theta =\frac{{r}_{\mathrm{o}}^{3}}{6}\left(\mathrm{tan}{\theta }_{o}+\mathrm{tan}\beta \right){\mathrm{cos}}^{3}{\theta }_{\mathrm{c}}\left[{\left(\frac{\mathrm{tan}{\theta }_{\mathrm{o}}+\mathrm{tan}\beta }{\mathrm{tan}{\theta }_{\mathrm{a}}+\mathrm{tan}\beta }\right)}^{2}-1\right]$$
(A2)
$${\int }_{{\theta }_{\mathrm{o}}}^{{\theta }_{\mathrm{b}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{cos}\theta \mathrm{d}r\mathrm{d}\theta =\frac{{r}_{\mathrm{o}}^{3}}{3}{\mathrm{sin}}^{3}{\theta }_{\mathrm{o}}\left(\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{o}}\right)\times \left\{\left(\frac{\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{o}}}{\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{b}}}-1\right)\left(\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{o}}\right)-\frac{\mathrm{cot}\alpha }{2}\left[{\left(\frac{\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{o}}}{\mathrm{cot}\alpha +\mathrm{cot}{\theta }_{\mathrm{b}}}\right)}^{2}-1\right]\right\}$$
(A3)
$${\int }_{{\theta }_{0}}^{{\theta }_{\mathrm{b}}}{\int }_{{r}_{\mathrm{s}}}^{{r}_{\mathrm{fr}}}{r}^{2}\mathrm{sin}\theta \mathrm{d}r\mathrm{d}\theta ={\int }_{{\theta }_{0}}^{{\theta }_{\mathrm{b}}}\frac{{r}_{\mathrm{fr}}^{3}}{3}\mathrm{sin}\theta \mathrm{d}\theta -{\int }_{{\theta }_{\mathrm{a}}}^{{\theta }_{\mathrm{o}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{sin}\theta \mathrm{d}r\mathrm{d}\theta -{\int }_{{\theta }_{\mathrm{o}}}^{{\theta }_{\mathrm{b}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{sin}\theta \mathrm{d}r\mathrm{d}\theta$$
(A4)
$${\int }_{{\theta }_{\mathrm{a}}}^{{\theta }_{\mathrm{o}}}{\int }_{0}^{{r}_{\mathrm{s}}}{r}^{2}\mathrm{sin}\theta \mathrm{d}r\mathrm{d}\theta =\frac{{r}_{\mathrm{o}}^{3}}{3}\left(\mathrm{tan}{\theta }_{\mathrm{o}}+\mathrm{tan}\beta \right){\mathrm{cos}}^{3}{\theta }_{\mathrm{o}}\times \left\{\frac{\mathrm{tan}\beta }{2}\left[1-{\left(\frac{\mathrm{tan}{\theta }_{\mathrm{o}}+\mathrm{tan}\beta }{\mathrm{tan}{\theta }_{\mathrm{a}}+\mathrm{tan}\beta }\right)}^{2}\right]-\left(\mathrm{tan}{\theta }_{\mathrm{o}}+\mathrm{tan}\beta \right)\left(1-\frac{\mathrm{tan}{\theta }_{\mathrm{o}}+\mathrm{tan}\beta }{\mathrm{tan}{\theta }_{\mathrm{a}}+\mathrm{tan}\beta }\right)\right\}$$
(A5)
$$\int\limits_{{\theta_{{\text{o}}} }}^{{\theta_{{\text{b}}} }} {\int\limits_{0}^{{r_{{\text{s}}} }} {r^{2} \sin \theta {\text{ d}}r{\text{ d}}\theta = \frac{{r_{{\text{o}}}^{3} }}{6}} } \sin^{3} \theta_{{\text{o}}} \left( {{\text{cot}}\theta_{{\text{o}}} + {\text{cot}}\alpha } \right)\left[ {\left( {\frac{{{\text{cot}}\theta_{{\text{o}}} + {\text{cot}}\alpha }}{{{\text{cot}}\theta_{{\text{b}}} + {\text{cot}}\alpha }}} \right)^{2} - 1} \right]$$
(A6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhu, H. & Zhang, L. Rock Slope Stability Analysis Incorporating the Effects of Intermediate Principal Stress. Rock Mech Rock Eng 56, 4271–4289 (2023). https://doi.org/10.1007/s00603-023-03277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-023-03277-4

Keywords

Navigation