Skip to main content
Log in

Improvement of Discontinuous Deformation Analysis Incorporating Implicit Updating Scheme of Friction and Joint Strength Degradation

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Dynamic analyses of jointed rock masses, such as slope stability evaluations, have been intensively studied in recent years; discontinuous deformation analysis (DDA) is one of the feasible methods in this field. To predict the failure mode, the kinematic energy, and the reaching distance after the collapse, the friction characteristics of the rock joints must be computed correctly. However, conventional DDA often cannot easily determine appropriate analysis parameters that can predict the sliding displacement between the rock masses precisely, and at worst, the computation fails. In this study, to enhance the robustness and accuracy of the DDA, the updating procedure of the friction force is investigated. An implicit updating scheme of friction force based on the elasto-plastic framework, the so-called return mapping algorithm, and the Newton–Raphson iteration is newly introduced to the DDA. Additionally, the transition algorithm between the static and the residual friction is also implemented to reproduce friction strength degradation. The performance of the proposed full implicit DDA is examined through the numerical examples and improvements in the robustness, accuracy, and computational efficiency for the dynamic sliding problems along the rock joint were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Code availability

The code used in this study is not made available.

Availability of data and material

Specific data will be made available if requested.

Abbreviations

t N :

Normal component of the contact force

t S :

Shear component of the contact force

p N :

Penalty coefficient in normal direction

p S :

Penalty coefficient in shear direction

g N :

Normal gap between the continua

g S :

Shear displacement along the contact interface

n :

Outward unit normal vector of the contact interface

τ :

Unit tangential vector of the contact interface

ϕ s :

Static friction angle of the joint

ϕ r :

Residual friction angle of the joint

References

Download references

Acknowledgements

This work is supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists [Subject No. 18K13829] provided to the first author. The authors are grateful to Dr. Naoki Iwata and Dr. Ryoji Kiyota for providing the data and photos of the shaking table experiment.

Funding

The first author is grateful to the support by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists [Subject No. 18K13829].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Formulation of the method is performed by RH, TK, and MK. Coding of the numerical analysis program and numerical analysis are performed by RH and TS. The first draft of the manuscript was written by RH and TS, and all authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ryota Hashimoto.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Variation and the Linearization of the Direction Vectors of Contact Surface

Appendix: Variation and the Linearization of the Direction Vectors of Contact Surface

In this appendix, the derivation of the variation and the linearization of the normal and the shear direction vectors of a contact surface used to formulate the consistent tangent contact stiffness matrix are shown. The contact between two objects at a single point is assumed (Fig. 7). Although the proposed method is formulated in two-dimensional condition, to express the geometrical states of the contact surface, a local basis (τk, e3, nk) on the contacting edge P2P3 is defined in a three-dimensional coordinate system including the out-of-plane direction. τk is the unit tangential vector along the edge P2P3 (the direction from P2 to P3 is positive):

$${{\varvec{\uptau}}}_{k} = \frac{1}{l}\left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right) = \frac{1}{l}\left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ 0 \\ \end{array} } \right\}.$$
(89)

e3 is the unit normal vector in the deep direction (vertical direction to a paper surface is positive):

$${\mathbf{e}}_{3} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ 1 \\ \end{array} } \right\},$$
(90)

and nk is the outward unit normal vector obtained using τk and e3 as follows:

$${\mathbf{n}}_{k} = {\mathbf{e}}_{3} \times {{\varvec{\uptau}}}_{k} = \frac{1}{l}\left\{ {\begin{array}{*{20}c} {y_{2} - y_{3} } \\ {x_{3} - x_{2} } \\ 0 \\ \end{array} } \right\},$$
(91)

where l is the length of the edge P2P3.

First, the variation of the normal direction vector of a contact surface δnk is derived by taking the variation of Eq. (90):

$$\delta {\mathbf{n}}_{k} = {\mathbf{e}}_{3} \times \delta {{\varvec{\uptau}}}_{k} .$$
(92)

The variation of the shear direction vector of a contact surface δτk is derived as follows:

$$\begin{aligned} \delta {{\varvec{\uptau}}}_{k} &= \delta \left( {\frac{1}{l}\left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right)} \right) \hfill \\ &= - \frac{\delta l}{{l^{2} }}\left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right) + \frac{1}{l}\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= - \frac{\delta l}{l}{{\varvec{\uptau}}}_{k} + \frac{1}{l}\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right). \hfill \\ \end{aligned}$$
(93)

δl in Eq. (93) is defined as follows:

$$\begin{aligned} \delta l &= \delta \sqrt {\left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right) \cdot \left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right)} \hfill \\ &= \frac{{{\mathbf{x}}_{3} - {\mathbf{x}}_{2} }}{{\sqrt {\left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right) \cdot \left( {{\mathbf{x}}_{3} - {\mathbf{x}}_{2} } \right)} }} \cdot \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= {{\varvec{\uptau}}}_{k} \cdot \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right). \hfill \\ \end{aligned}$$
(94)

Therefore, δτk is expressed as:

$$\begin{aligned} \delta {{\varvec{\uptau}}}_{k} &= - \frac{1}{l}\left\{ {{{\varvec{\uptau}}}_{k} \cdot \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right)} \right\}{{\varvec{\uptau}}}_{k} + \frac{1}{l}\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= - \frac{1}{l}{{\varvec{\uptau}}}_{k} \otimes {{\varvec{\uptau}}}_{k} \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) + \frac{1}{l}\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= \frac{1}{l}\left( {{\mathbf{I}} - {{\varvec{\uptau}}}_{k} \otimes {{\varvec{\uptau}}}_{k} } \right)\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= \frac{1}{l}{\mathbf{n}}_{k} \otimes {\mathbf{n}}_{k} \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \hfill \\ &= \frac{1}{l}{\mathbf{n}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right)} \right), \hfill \\ \end{aligned}$$
(95)

where I is the second-order unit tensor. Substituting Eq. (95), Eq. (92) yields:

$$\begin{aligned} \delta {\mathbf{n}}_{k} &= {\mathbf{e}}_{3} \times \frac{1}{l}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){\mathbf{n}}_{k} \hfill \\ &= - \frac{1}{l}{{\varvec{\uptau}}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right)} \right). \hfill \\ \end{aligned}$$
(96)

Equation (96) shows that δnk and τk are parallel with each other. The linearization of the direction vectors Δnk and Δτk can be derived in the same manner as with δnk and δτk.

$$\Delta {\mathbf{n}}_{k} = - \frac{1}{l}{{\varvec{\uptau}}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right),$$
(97)
$$\Delta {{\varvec{\uptau}}}_{k} = \frac{1}{l}{\mathbf{n}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right).$$
(98)

Applying Eq. (31) and (36), Eqs. (95)–(98) yields:

$$\delta {\mathbf{n}}_{k} = - \frac{1}{{l^{2} }}\left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\delta d_{k} } \right\},$$
(99)
$$\Delta {\mathbf{n}}_{k} = - \frac{1}{{l^{2} }}\left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\},$$
(100)
$$\delta {{\varvec{\uptau}}}_{k} = \frac{1}{{l^{2} }}\left\{ {\begin{array}{*{20}c} {y_{2} - y_{3} } \\ {x_{3} - x_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\delta d_{k} } \right\}\;,{\text{ and}}$$
(101)
$$\Delta {{\varvec{\uptau}}}_{k} = \frac{1}{{l^{2} }}\left\{ {\begin{array}{*{20}c} {y_{2} - y_{3} } \\ {x_{3} - x_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\},$$
(102)

[Jk] is the matrix shown in Eq. (45), and the out-of-plane components of the vectors and matrices that are zero are ignored.

Next, Δδnk is derived by linearizing Eq. (96).

$$\begin {aligned} \Delta \delta {\mathbf{n}}_{k} = \frac{\Delta l}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){{\varvec{\uptau}}}_{k} - \frac{1}{l}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot \Delta {\mathbf{n}}_{k} } \right){{\varvec{\uptau}}}_{k} - \frac{1}{l}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right)\Delta {{\varvec{\uptau}}}_{k} .\end{aligned}$$
(103)

Δl has a similar form to δl as follows:

$$\Delta l = {{\varvec{\uptau}}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right).$$
(104)

Equation (103) is transformed into the following equation using Eqs. (95)–(98) and (104).

$$\begin{aligned} \Delta \delta {\mathbf{n}}_{k} &= \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){{\varvec{\uptau}}}_{k} \left( {{{\varvec{\uptau}}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right) \hfill \\ &+ \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {{\varvec{\uptau}}}_{k} } \right){{\varvec{\uptau}}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right) \hfill \\ &- \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){\mathbf{n}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right). \hfill \\ \end{aligned}$$
(105)

After substituting Eqs. (36), (45), and (57), Δδnk is expressed as follows (ignoring the out-of-plane components):

$$\begin{aligned} \Delta \delta {\mathbf{n}}_{k} &= \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {J_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ \end{array} } \right\}\left[ {L_{k} } \right]\left\{ {\Delta d_{k} } \right\} \hfill \\ &+ \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {L_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\} \hfill \\ &- \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {J_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {y_{2} - x_{3} } \\ {x_{3} - x_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\}. \hfill \\ \end{aligned}$$
(106)

Finally, Δδτk is derived by linearizing Eq. (95) as shown below.

$$\begin{aligned} \Delta \delta {{\varvec{\uptau}}}_{k} &= - \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){\mathbf{n}}_{k} \left( {{{\varvec{\uptau}}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right) \hfill \\ &- \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {{\varvec{\uptau}}}_{k} } \right){\mathbf{n}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right) \hfill \\ &- \frac{1}{{l^{2} }}\left( {\left( {\delta {\mathbf{u}}_{3} - \delta {\mathbf{u}}_{2} } \right) \cdot {\mathbf{n}}_{k} } \right){{\varvec{\uptau}}}_{k} \left( {{\mathbf{n}}_{k} \cdot \left( {\Delta {\mathbf{u}}_{3} - \Delta {\mathbf{u}}_{2} } \right)} \right). \hfill \\ \end{aligned}$$
(107)

Equations (96)–(98) and Eq. (104) are also considered. Substituting Eqs. (36), (45), (57), Δδτk is expressed in the matrix form:

$$\begin{aligned} \Delta \delta {{\varvec{\uptau}}}_{k} &= - \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {J_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {y_{2} - x_{3} } \\ {x_{3} - x_{2} } \\ \end{array} } \right\}\left[ {L_{k} } \right]\left\{ {\Delta d_{k} } \right\} \hfill \\ &- \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {L_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {y_{2} - x_{3} } \\ {x_{3} - x_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\} \hfill \\ &- \frac{1}{l}\left\{ {\delta d_{k} } \right\}^{{\text{T}}} \left[ {J_{k} } \right]^{{\text{T}}} \left\{ {\begin{array}{*{20}c} {x_{3} - x_{2} } \\ {y_{3} - y_{2} } \\ \end{array} } \right\}\left[ {J_{k} } \right]\left\{ {\Delta d_{k} } \right\}. \hfill \\ \end{aligned}$$
(108)

Using Eqs. (99)–(102), Eq. (106), and Eq. (108), the matrix form of δgN, ΔgN, ΔδgN, δgS, ΔgS, and ΔδgS shown in Sect. 2.5.2 can be derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, R., Sueoka, T., Koyama, T. et al. Improvement of Discontinuous Deformation Analysis Incorporating Implicit Updating Scheme of Friction and Joint Strength Degradation. Rock Mech Rock Eng 54, 4239–4263 (2021). https://doi.org/10.1007/s00603-021-02459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02459-2

Keywords

Navigation