Skip to main content
Log in

On a Four-Parameter Linear Failure Criterion

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data and Material

Data are provided in the Appendix.

References

  • Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci 42(2005):431–439

    Article  Google Scholar 

  • Baycan S (1996) Field performance of expansive anchors and piles in rock. Ph.D. thesis, Monash University, Melbourne, Australia

  • Besuelle P, Desrues J, Raynaud S (2000) Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell. Int J Rock Mech Min Sci 37(8):1223–1237

    Article  Google Scholar 

  • Brown ET (1981) Rock characterization, testing and monitoring: ISRM suggested methods. In: International society for rock mechanics

  • Carter BJ, Duncan EJS, Lajtai EZ (1991) Fitting strength criteria to intact rock. Geotech Geol Eng 9(1991):73–81

    Article  Google Scholar 

  • Chiu HK (1981) Geotechnical properties and numerical analysis for socketed pile design in weak rock. Ph.D. thesis, Monash University, Melbourne, Australia

  • Gowd TN, Rummel F (1980) Effect of confining pressure on the fracture behaviour of a porous rock. Int J Rock Mech Min Sci 17(4):225–229

    Article  Google Scholar 

  • Haimson B, Rudnicki JW (2010) The effect of the intermediate principal stress on fault formation and fault angle in siltstone. J Struct Geol 32(11):1701–1711

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 106(9):1013–1035

    Article  Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Hoek E, Brown ET (2019) The Hoek–Brown failure criterion and GSI—2018 edition. J Rock Mech Geotech Eng 11:445–463

    Article  Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman RW (2007) Fundamentals of rock mechanics. Blackwell Publishing, Hoboken

    Google Scholar 

  • Kovari K, Tisa A, Einstein HH, Franklin JA (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci 20(6):285–290

    Article  Google Scholar 

  • Labuz JF, Bridell JM (1993) Reducing frictional constraint in compression testing through lubrication. Int J Rock Mech Min Sci 30(4):451–455

    Article  Google Scholar 

  • Labuz JF, Dai ST, Papamichos E (1996) Plane-strain compression of rock-like materials. Int J Rock Mech Min Sci 33(6):573–584

    Article  Google Scholar 

  • Labuz JF, Zeng F, Makhnenko R, Li Y (2018) Brittle failure of rock: a review and general linear criterion. J Struct Geol 112(2018):7–28

    Article  Google Scholar 

  • Ma X, Haimson B (2016) Failure characteristics of two porous sandstones subjected to true triaxial stresses. J Geophys Res 122(4):2525–2540

    Article  Google Scholar 

  • Makhnenko R, Labuz JF (2014) Plane strain testing with passive restraint. Rock Mech Rock Eng 47:2021–2029

    Article  Google Scholar 

  • Meyer JP, Labuz JF (2013) Linear failure criteria with three principal stresses. Int J Rock Mech Min Sci 60:180–187

    Article  Google Scholar 

  • Mogi K (1971) Fracture and flow of rocks under high triaxial compression. J Geophys Res 76(5):1255–1269

    Article  Google Scholar 

  • Mogi K (2007) Experimental rock mechanics. CRC Press, Boca Raton

    Google Scholar 

  • Mohr O (1900) Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereines deutscher Ingenieure 44(45):1524–1530

    Google Scholar 

  • Pan XD, Hudson JA (1988) A simplified three dimensional Hoek–Brown yield criterion. In: Paper presented at the ISRM international symposium, Madrid, Spain

  • Papamichos E, Tronvoll J, Vardoulakis I, Labuz JF, Skjvrstein A, Unander TE, Sulem J (2000) Constitutive testing of Red Wildmoor sandstone. Mech Cohesive Frict Mater 5(1):1–40

    Article  Google Scholar 

  • Paul B (1961) A modification of the Coulomb–Mohr theory of fracture. J Appl Mech 28(2):259–268

    Article  Google Scholar 

  • Paul B (1968) Generalized pyramidal fracture and yield criteria. Int J Solids Struct 4(2):175–196

    Article  Google Scholar 

  • Schwartz AE (1964) Failure of rock in the triaxial shear test. In: Proceedings of the 6th US symposium on rock mechanics (USRMS), Rolla, Missouri

  • Stavropoulou VG (1982) Behaviour of a brittle sandstone in plane-strain loading conditions. In: Proceedings of the 23rd US symposium on rock mechanics (USRMS), Berkeley, California

  • Tarokh A, Detournay E, Labuz JF (2018) Direct measurement of the unjacketed pore modulus of porous solids. Proc R Soc Lond A Math Phys Sci 474(2219)

  • Von Karman T (1911) Festigkeitsversuche unter all seitigem Druck. Z Verein Deut Ingr 55(17)

  • Wang B, Zhu JB, Wu AQ (2010) Experimental validation of nonlinear strength property of rock under high geostress. Chin J Rock Mech Eng 29(3):542–548

    Google Scholar 

  • Williams AF (1980) The design and performance of piles into weak rock. Ph.D. thesis, Monash University, Melbourne, Australia

  • You M (2010) Three independent parameters to describe conventional triaxial compressive strength of intact rocks. J Rock Mech Geotech Eng 2(4):350–356

    Google Scholar 

  • Zeng F, Folta BL, Labuz JF (2019) Strength testing of sandstone under multi-axial stress states. Geotech Geol Eng 37:4803–4814

    Article  Google Scholar 

Download references

Acknowledgements

Partial support for Pouyan Asem, with no endorsement of the approach, was provided by the J. S. Braun/Braun Intertec Visiting Chair at the Department of Civil, Environmental, and Geo-Engineering, University of Minnesota.

Funding

Pouyan Asem received funding from the Department of Civil, Environmental, and Geo-Engineering, University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

PA, HF, and JFL: designed and analyzed the experiments, and contributed to the writing of the manuscript; PA and HF: conducted the experiments; PA: collected and analyzed the rock strength data.

Corresponding author

Correspondence to Pouyan Asem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asem, P., Fuselier, H. & Labuz, J.F. On a Four-Parameter Linear Failure Criterion. Rock Mech Rock Eng 54, 3369–3376 (2021). https://doi.org/10.1007/s00603-021-02451-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02451-w

Keywords

Navigation