Skip to main content
Log in

Discrete Element Modeling of the Nayong Rock Avalanche, Guizhou, China Constrained by Dynamic Parameters from Seismic Signal Inversion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A rock avalanche that destroyed 23 houses and killed 35 people occurred on 28 August 2017, Nayong, SW China. Combined with the dynamic parameters from seismic signal inversion, a discrete element model, MatDEM was used to determine the rock avalanche’s kinematic behavior. Although the dynamic process obtained through inversion will be disturbed by factors, such as rockfall from the source area, by comparing the velocity of rock avalanche versus horizontal distance traveled, the best combination of parameters was selected from different values given. The dynamic process obtained by modeling was compared with the nearest seismometer frequency distribution spectrum, showing that the dynamic process is in good agreement with those parameters inverted from seismic signals. The simulation results show that the movement process lasted for nearly 40 s, with a maximum speed of 40 m/s. This model of selecting parameters contributes to explain the dynamic processes of similar rock avalanche more accurately and is of great significance to the hazard prediction in the karst area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118(3):1472–1490

    Google Scholar 

  • An H, Ouyang C, Zhao C, Zhao W (2020) Landslide dynamic process and parameter sensitivity analysis by discrete element method: the case of Turnoff Creek rock avalanche. J Mt Sci 17:1581–1595

    Google Scholar 

  • Aster RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. Elsevier, Amsterdam

    Google Scholar 

  • Cagnoli B, Piersanti A (2015) Grain size and flow volume effects on granular flow mobility in numerical simulations: 3-D discrete elements modeling of flows of angular rock fragments. J Geophys Res Solid Earth 120:2350–2366

    Google Scholar 

  • Chen H, Lee CF (2000) Numerical simulation of debris flows. Can Geotech J 37(1):146–160

    Google Scholar 

  • Coe JA, Bessette-Kirton EK, Geertsema M (2018) Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery. Landslides 15(3):393–407

    Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3(6):523–538

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. Landslides investigation and mitigation, transportation research board special report 247. National Research Council, National Academy Press, Washington, D.C., pp 36–75

    Google Scholar 

  • Cundall P, Strack O (1979) A discrete element model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  • Dammeier F, Moore JR, Haslinger F, Loew S (2011) Characterization of alpine rockslides using statistical analysis of seismic signals. J Geophys Res 116:F04024

    Google Scholar 

  • Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J Geophys Res Earth Surf 109(F1):1–14

    Google Scholar 

  • Deparis J, Jongmans D, Cotton F, Baillet L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seismol Soc Am 98(4):1781–1796

    Google Scholar 

  • Eissler HK, Kanamori H (1987) A single-force model for the 1975 Kalapana, Hawaii, earthquake. J Geophys Res 92(B6):4827–4836

    Google Scholar 

  • Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339(6126):1416–1419

    Google Scholar 

  • Fan XM, Xu Q, Scaringi G, Zheng G, Huang RQ, Dai LX, Ju YZ (2018) The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report. Landslides 16(1):139–154

    Google Scholar 

  • Fukao K (1995) Single force representation of earthquakes due to landslides or the collapse of caverns. Geophys J Int 122:243–248

    Google Scholar 

  • Gattinoni P, Scesi L, Arieni L, Canavesi M (2012) The February (2010) large landslide at Maierato, Vibo Valentia, Southern Italy. Landslides 9(2):255–261

    Google Scholar 

  • Guthrie RH, Evans SG, Catane SG, Zarco MA, Saturay R Jr (2009) The 17 February 2006 rock slide-debris avalanche at Guinsaugon Philippines: a synthesis. Bull Eng Geol Environ 68:201–213

    Google Scholar 

  • He K, Chen C, Li B (2019) Case study of a rockfall in Chongqing, China: movement characteristics of the initial failure process of a tower-shaped rock mass. Bull Eng Geol Environ 78:3295–3303

    Google Scholar 

  • Hibert C, Mangeney A, Grandjean G, Shapiro NM (2011) Slope instabilities in Dolomieu crater, Reunion Island: from seismic signals to rockfall characteristics. J Geophys Res 116:F04032

    Google Scholar 

  • Hibert C, Ekström G, Stark CP (2014a) Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis. Geophys Res Lett 41:4535–4541

    Google Scholar 

  • Hibert C, Mangeney A, Grandjean G, Baillard C, Rivet D, Shapiro NM, Satriano C, Maggi A, Boissier P, Ferrazzini V, Crawford W (2014b) Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano. J Geophys Res Earth Surf 119:1082–1105

    Google Scholar 

  • Huang QH, Cai YL (2007) Spatial pattern of Karst rock desertification in the Middlle of Guizhou Province, Southwestern China. Environ Geol 52:1325–1330

    Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc A 454(1971):903–995

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout mechanism. Bull Geol Soc Am 116:1240–1252

    Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Iverson RM, George DL, Allstadt K, Reid ME, Collins BD, Vallance JW, Schilling SP, Godt JW, Cannon CM, Magirl CS, Baum RL, Coe JA, Schulz WH, Bower JB (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett 412:197–208

    Google Scholar 

  • Julian BR, Miller AD, Foulger GR (1998) Non-double couple earthquakes. Rev Geophys 36(4):525–549

    Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202

    Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from traveltimes. Geophys J Int 122(1):108–124

    Google Scholar 

  • Li D, Yan L, Wu L et al (2019) The Hejiapingzi landslide in Weining County, Guizhou Province, Southwest China: a recent slow-moving landslide triggered by reservoir drawdown. Landslides 16:1353–1365

    Google Scholar 

  • Lin CH, Lin ML (2015) Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng Geol 197:172–187

    Google Scholar 

  • Liu C, Pollard DD, Shi B (2013) Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J Geophys Res Solid Earth 118(1):71–82

    Google Scholar 

  • Liu C, Xu Q, Shi B, Deng S, Zhu H (2017) Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Comput Geosci 103:12–20

    Google Scholar 

  • Lu C-Y, Tang C-L, Chan Y-C, Hu J-C, Chi C-C (2014) Forecasting landslide hazard by the 3D discrete elementmethod: a case study of the unstable slope in the Lushan Hot Spring District, Central Taiwan. Eng Geol 183:14–30

    Google Scholar 

  • Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat Commun 5:1–9

    Google Scholar 

  • Mangeney-Castelnau A, Vilotte J-P, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527

    Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448. https://doi.org/10.1139/t05-064

    Article  Google Scholar 

  • Mollon G, Richefeu V, Villard P, Daudon D (2012) Numerical simulation of rock avalanches: Influence of a local dissipative contact model on the collective behavior of granular flows. J Geophys Res 117:F02036

    Google Scholar 

  • Moore JR, Pankow KL, Ford SR, Koper KD, Hale JM, Aaron J, Larsen CF (2017) Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data. J Geophys Res Earth Surf 122:615–640

    Google Scholar 

  • Moran SC, Matoza RS, Garces MA, Hedlin MAH, Bowers D, Scott WE, Sherrod DR, Vallance JW (2008) Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington. Geophys Res Lett 35(19):116–122

    Google Scholar 

  • Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett 39:L16402

    Google Scholar 

  • Moretti L, Allstadt K, Mangeney A, Capdeville Y, Stutzmann E, Bouchut F (2015) Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J Geophys Res Solid Earth 120(2579):2599

    Google Scholar 

  • Ouyang G, Wang J (2010) Mining landscape environmental protection and reservoir recovery scheme of Pusa coal mine in Zhangjiawan town, Nayong county, Guiyang. Report of the Guizhou Dikuang Engineering Investigation Corporation (in Chinese)

  • Petley DN, Rosser N, Parker R (2009) Quantifying the impacts of landslides on society. EOS Trans Am Geophys Un 90(52, Fall Meet. Suppl.):NH52A-04

    Google Scholar 

  • Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41(1):59–84

    Google Scholar 

  • Preh A, Poisel R (2007) 3D modelling of rock mass falls using the Particle Flow Code PFC3D. In: Proceedings of the 11th Congress of the International Society for Rock Mechanics, Lisbon, July 9–13, 2007. Specialized Session S01—Rockfall—Mechanism and Hazard Assessment

  • Schneider D, Bartlet P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res 115:F04026

    Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell, Malden

    Google Scholar 

  • Steven NW, Simon D (2006) Particulate kinematic simulations of debris avalanches: interpretation of deposits and landslide seismic signals of Mount Saint Helens, 1980 May 18. Int J Geophys 167:991–1004

    Google Scholar 

  • Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5:791–798

    Google Scholar 

  • Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106:1–19

    Google Scholar 

  • Xing AG, Xu Q, Zhu YQ, Jiang Y (2014a) The August 27, 2014a, rock avalanche and related impulse water waves in Fuquan, Guizhou, China. Landslides 13:411–422

    Google Scholar 

  • Xing AG, Wang GH, Yin YP, Jiang Y, Wang GZ, Yang SY, Dai DR, Zhu YQ, Dai JA (2014b) Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China. Eng Geol 181:1–14

    Google Scholar 

  • Xing AG, Wang GH, Li B, Jiang Y, Feng Z, Kamai T (2015) Long runout mechanism and landsliding behaviour of a large catastrophic landslide triggered by a heavy rainfall in Guanling, Guizhou, China. Can Geotech J 52:971–981

    Google Scholar 

  • Xu Q, Fan XM, Huang RQ, Yin YP, Hou SS, Dong XJ, Tang MG (2010) A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides 7(1):75–87

    Google Scholar 

  • Yin YP, Sun P, Zhu JL, Yang SY (2011) Research on catastrophic rock avalanche at Guangling, Guizhou, China. Landslides 8(4):517–525

    Google Scholar 

  • Zhang M, McSaveney MJ (2017) Rock-avalanche deposits store quantitative evidence on internal shear during runout. Geophys Res Lett 44:8814–8821

    Google Scholar 

  • Zheng G, Xu Q, Ju YZ, Li WL, Zhou XP, Peng SQ (2018) The Pusacun rock avalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: characteristics and failure mechanism. J Eng Geol 26(1):223–240 ((in Chinese))

    Google Scholar 

  • Zhu YQ, Xu SM, Zhuang Y, Dai XJ, Lv G, Xing AG (2019) Characteristics and runout behaviour of the disastrous 28 August 2017 rock avalanche in Nayong, Guizhou, China. Eng Geol 259(201):105154

    Google Scholar 

  • Zhuang Y, Xu Q, Xing AG (2019) Numerical investigation of the air blast generated by the Wenjia valley rock avalanche in Mianzhu, Sichuan, China. Landslides 16(12):2499–2508

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFC1504804) and the National Natural Science Foundation of China (No. 41530639). All of the data above for this paper are available in Figshare (figures: http://doi.org/10.6084/m9.figshare.11768808, and tables: http://doi.org/10.6084/m9.figshare.11822199). An additional video is also available in Figshare (http://doi.org/10.6084/m9.figshare.11822094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Xing, A., Jin, K. et al. Discrete Element Modeling of the Nayong Rock Avalanche, Guizhou, China Constrained by Dynamic Parameters from Seismic Signal Inversion. Rock Mech Rock Eng 54, 1629–1645 (2021). https://doi.org/10.1007/s00603-021-02363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02363-9

Keywords

Navigation