Skip to main content
Log in

Experimental Study of the Influence of Drawbell Geometry on Hang-Ups in Cave Mine Applications

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Coarse arches are a common issue in caving mines where large fragments are expected. These arches interrupt ore flow in drawpoints, decreasing available draw area, and also increasing the possibility of non-uniform draw, which can increase fine migration, mud-rush risk, and induced stress in the caved column. Moreover, hang-up removal is operationally complex and dangerous. The literature on gravity flow indicates that coarse arches are mainly influenced by the ratio between the rock fragments and the size of the opening and stresses, but some key variables have not been quantified. Here, the influence of fragment-size distribution and drawbell geometry on hang-up formation is analyzed through controlled laboratory experiments in a physical model. Results show that drawbell parameters, such as length, width and angle are relevant parameters in hang-up events. In particular, the ratios DL/d80 and DW/d80 as well as VDB/Vp are key to hang-up events, the probability of which will decrease when these ratios increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α :

Drawbell angle (between extraction drifts, in the minor pillar)

β :

Drawbell angle (between production drifts, in the mayor pillar)

λ i :

i Scaled factor (Here, i = {m, v, l, ρ, g, ϕ})

Cu:

Coefficient of uniformity (Cu = d60/d10)

d i :

Fragment size such that i % of the particles are smaller.

DBi :

Drawbell i (Here, i = {1, 2, 3, 4})

D W :

Drawpoint width

D L :

Drawbell length (measured in the drawbell’s bottom)

H g :

Mean mass between hang-ups.

LHD:

Load Haul Dump equipment

T L :

Top drawbell length

T W :

Top drawbell width

V DB :

Drawbell volume

V p :

Particle volume

References

  • Baiden G (2017) Telerobotics for hang-up assessment and removal—an idea whose time has come. In: Australian Centre for Geomechanics (ed) Proceedings of the first international conference on underground mining technology, pp 597–607

  • Beus MJ, Pariseau WG, Stewart BM, Iverson SR (2001) Design of ore passes. In: Hustrulid W, Bullock R (eds) Underground mining methods: engineering fundamentals and international case studies, pp 627–634

  • Brzovic A, Vallejos J, Arancibia E, Burgos L, Delonca A, Gaete M, Barerra V (2016) Analysis and modelling of the fragmentation process—case studies at El Teniente Mine. In: AusIMM (ed) Proceedings of the seventh international conference on mass mining, Sydney, pp 305–310

  • Bunker KA, Campbell AD, O’Toole D, Penney, A (2015) Guidelines for orepass design in a sublevel cave mine. In: Potvin Y (ed) Proceedings of the international seminar on design methods in underground mining, pp 585–600

  • Castro R (2006) Study of the mechanisms of gravity flow for block caving. PhD Thesis, University of Queensland, Brisbane

  • Castro R, Pineda M (2015) The role of gravity flow in the design and planning of large sublevel stopes. J S Afr Inst Min Metall 115(2):113–118

    Article  Google Scholar 

  • Castro R, Trueman R, Halim A (2007) A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci 44(6):860–870. https://doi.org/10.1016/j.ijrmms.2007.01.001

    Article  Google Scholar 

  • Castro R, Gómez RE, Hekmat A (2016) Experimental quantification of hang-up for block caving applications. Int J Rock Mech Min Sci 85:1–9. https://doi.org/10.1016/j.ijrmms.2016.02.005

    Article  Google Scholar 

  • Chen Q, Qin S, Chen Q (2019) Numerical simulation of ore particle flow behaviour through a single drawpoint under the influence of a flexible barrier. Geofluids. https://doi.org/10.1155/2019/6127174

    Article  Google Scholar 

  • Codelco (2009) Caracterización geotécnica estructural—Proyecto Mina Chuquicamata Subterráneo—Ingeniería Básica (Geotechnical characterization—Chuquicamata Underground Mine Project—preliminary engineering), División Codelco Norte (in Spanish)

  • Esterhuizen GS (2005) BCF version3.05—a program to predict block cave fragmentation. Technical reference and user’s guide

  • Gómez R, Castro R, Casali A, Palma S, Hekmat A (2017) A comminution model for secondary fragmentation assessment for block caving. Rock Mech Rock Eng 50:3073–3084. https://doi.org/10.1007/s00603-017-1267-2

    Article  Google Scholar 

  • Hadjigeourgiou J, Lessard JF (2007) Numerical investigation of ore pass hang-up phenomena. Int J Rock Mech Min Sci 44:820–834. https://doi.org/10.1016/j.ijrmms.2006.12.006

    Article  Google Scholar 

  • Hadjigeourgiou J, Lessard JF (2010) Strategies for restoring material flow in ore and waste pass systems. Int J Min Reclam Environ 24(3):267–282. https://doi.org/10.1080/17480931003658894

    Article  Google Scholar 

  • Hancock W (2013) Gravity flow of rock in caving mines: Numerical modelling of isolated, interactive and non-ideal draw. PhD Thesis, University of Queensland.

  • Hurtado JP (2014) Fragmentation back analysis at El Teniente 1993–2013. Internal Report, GRMD-SGL-INF-69-2014 (in Spanish)

  • Hurtado JP, Pereira J, Campos R (2007) Fragmentation back analysis, mines: Diablo Regimiento, Reno and Teniente 4 Sur. In: Final Report, NNM-ICO-GEO-INF No 003, Codelco (in Spanish)

  • IM2 Consulting (2006) Levantamiento y evaluación de prácticas de reducción secundaria (Review of Secondary breakage techniques). Santiago (in Spanish)

  • Jin A, Sun H, Ma G, Gao Y, Wu S, Meng X (2016) A study on the draw laws of caved ore and rock using the discrete element method. Comput Geotech 80:59–70. https://doi.org/10.1016/j.compgeo.2016.06.016

    Article  Google Scholar 

  • Kurniawan C, Setyoko TB (2008) Impact of rock type variability on production rates and scheduling at the DOZ-ESZ. In: Schunnesson H, Nordlund E (eds) Proceedings of the 5th conference and exhibition on mass mining, Lulea, pp 291–302

  • Kvapil R (2008) Gravity flow in Sublevel and panel caving—a common sense approach Sweden

  • Lopez S, Castro R (2018) Análisis de formación de colgaduras en el bloque 2 de la mina Esmeralda (Hang-up fomation analysis in Esmeralda mine, bloque 2). In: Castro R, Herazo Y (eds) UMining 2018—II Congreso Iberoamericano en Minería Subterránea y a Cielo Abierto. Santiago, pp 82–94 (in Spanish)

  • Maass S (2013) Alternativas tecnológicas para descuelgue de zanjas (Technologies alternatives in hang-up release). Master thesis, Universidad de Chile (in Spanish)

  • Nadolski S, Munkhchuluun M, Klein B, Elmo D, Hart C (2018) Cave fragmentation in a cave-to-mill context at the New Afton Mine part I: fragmentation and hang-up frequency prediction. Min Technol 127(2):75–83. https://doi.org/10.1080/14749009.2017.1351115

    Article  Google Scholar 

  • Nazeri H, Mustoe GGW, Rozgonyi TG, Wienecke CJ (2002) Implementation of a discrete element methodology for the modeling of gravity flow of ore in ore passes. In: Proceedings of the 5th American rock mechanics symposium and the 17th tunneling association of Canada conference, pp 1307–1313

  • Ngidi SN, Pretorius DD (2010) Impact of poor fragmentation on cave management. In: Potvin Y (ed) Proceedings of the 2nd international symposium on block and sublevel caving, Perth, pp 593–602

  • Nicholas DE, Srikant A (2004) Assessment of primary fragmentation from drill core data. In: Karzulovic A, Alfaro A (eds) Proceedings of the 4th international conference & exhibition on mass mining, Santiago, pp 55–58

  • Orellana LF (2012) Study of design variables for the continuous mining system through laboratory experiments. Master’s thesis, University of Chile

  • Power G (2004) Modelling granular flow in caving miners: Large-scale physical models and Full-scale experiments. PhD Thesis, University of Queensland, Brisbane.

  • Silva M, Hidalgo F, Pinochet S, Adams E (2018) Metodología para estimar la disponibilidad de área abierta en panel caving, mina El Teniente (Panel caving methodology for area availability, El Teniente mine). In: Castro R, Herazo Y (eds) UMining 2018—II Congreso Iberoamericano en Minería Subterránea y a Cielo Abierto (in Spanish)

  • SRK Consulting (2015) Chuquicamata underground project: fragmentation study update, Codelco [Internal Report]

  • Szwedzicki T (2007) Formation and removal of hang-ups in ore passes. Min Technol 116(3):139–145. https://doi.org/10.1179/174328607X191047

    Article  Google Scholar 

  • Viera E, Diez E (2014) Analysis of hang-up frequency in Bloque 1–2, Esmeralda Sur Mine. In: Castro (ed) Proceedings of the 3rd international symposium on block and sublevel caving, Santiago, pp 138–145

Download references

Acknowledgements

This work was funded by the CONICYT/PIA Project AFB180004. R. Gómez thanks to CONICYT PFCHA/DOCTORADO BECAS CHILE/2019–72180000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, R., López, S., Gómez, R. et al. Experimental Study of the Influence of Drawbell Geometry on Hang-Ups in Cave Mine Applications. Rock Mech Rock Eng 54, 1–10 (2021). https://doi.org/10.1007/s00603-020-02247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02247-4

Keywords

Navigation