Skip to main content
Log in

Lower Bound Limit Analysis Using Power Cone Programming for Solving Stability Problems in Rock Mechanics for Generalized Hoek–Brown Criterion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

This study introduces a methodology to solve plane strain stability problems in rock mechanics, following the generalized Hoek and Brown yield criterion, by employing the lower bound finite elements limit analysis in conjunction with the power cone programming. The efficacy of the proposed approach has been demonstrated by solving three different types of stability problems: (1) finding the bearing capacity of strip footings on rock media, (2) assessing the stability of finite rock slopes, and (3) the stability analysis of unlined rectangular tunnels in rock mass. In all the cases, the results obtained from the analysis have been compared thoroughly with that computed using (1) nonlinear programming, and (2) semi-definite programming technique. The present approach has been found to be computationally very robust and it generates very accurate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\sigma_{1}\) :

Major principal stress

\(\sigma_{3}\) :

Minor principal stress

\(\sigma_{\text{ci}}\) :

Uniaxial compressive strength

\(m_{\text{b}}\) :

Hoek–Brown material constant

\(m_{i}\) :

Hoek–Brown material constant

s :

Hoek–Brown material constant

α :

Hoek–Brown material constant

GSI:

Geological strength index

D :

Disturbance factor

\({\mathcal{K}}\) :

Cone

\({\mathcal{K}}^{*}\) :

Dual cone

\({\Re }^{n}\) :

n-Dimensional real space

\({\Re }^{m \times n}\) :

Real matrices of size m\(\times\)n

\(Q^{n}\) :

n-Dimensional quadratic cone

\(Q_{r}^{n}\) :

n-Dimensional rotated quadratic cone

\(P_{n}^{\beta}\) :

n-Dimensional power cone

\({\mathbf{S}}^{n}\) :

Set of \(n \times n\) symmetric matrices

\({\mathbf{S}}_{ + }^{n}\) :

Set of \(n \times n\) positive definite matrices

\(\varvec{\sigma}\) :

Stress tensor

\(\lambda_{\hbox{max} }\) :

Auxiliary variable

\(\lambda _{{\min }}\) :

Auxiliary variable

t :

Auxiliary variable

\(\sigma_{x}\) :

Normal stress on x-plane

\(\sigma_{y}\) :

Normal stress on y-plane

\(\tau_{xy}\) :

Shear stress on x-plane in y-direction

\(\varvec{c}\) :

Vector which contains the objective function

\(\bar{\varvec{\sigma }}\) :

Global unknown vector

NN :

Number of nodes

\({\mathbf{A}}_{\text{equi}}\) :

Matrix containing the left-hand side of all the equilibrium equations

\({\mathbf{A}}_{\text{dis}}\) :

Matrix containing the left-hand side of all the discontinuity equations

\({\mathbf{A}}_{\text{bc}}\) :

Matrix containing the left-hand side of all the boundary conditions

\({\mathbf{b}}_{\text{equi}}\) :

Vector containing the right-hand side of all the equilibrium equations

\({\mathbf{b}}_{\text{dis}}\) :

Vector containing the right-hand side of all the discontinuity equations

\({\mathbf{b}}_{\text{bc}}\) :

Vector containing the right-hand side of all the boundary conditions

B :

Width of foundation

\(Q_{\text{u}}\) :

Maximum vertical load

\(N_{\sigma }\) :

Bearing capacity factor of strip footing in weightless media

\(N_{\sigma \gamma }\) :

Bearing capacity factor of strip footing

\(q_{\text{u}}\) :

Ultimate bearing pressure

γ :

Unit weight of rock mass

L :

Parameter which defines the boundary

H :

Parameter which defines the boundary

p :

Parameter which defines the state of stress

q :

Parameter which defines the state of stress

β :

Slope angle

\(N_{\text{s}}\) :

Stability number for slope

h :

Height of tunnel

w :

Width of tunnel

\(N_{\text{t}}\) :

Stability number for tunnel

References

  • Alizadeh F (1995) Interior point methods in semidefinite programming with applications to combinational optimization. SIAM J Optim 5(1):13–51

    Article  Google Scholar 

  • Alizadeh F, Goldfarb D (2003) Second-order cone programming. Math Progr Ser B 95(1):3–51

    Article  Google Scholar 

  • Alzoubi AK, Martin CD, Cruden DM (2010) Influence of tensile strength on toppling failure in centrifuge tests. Int J Rock Mech Min Sci 47:974–982

    Article  Google Scholar 

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Progr 95(2):249–277

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chakraborty M, Kumar J (2015) Bearing capacity of circular footings over rock mass by using axisymmetric quasi lower bound finite element limit analysis. Comput Geotech 70:138–149

    Article  Google Scholar 

  • Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the international symposium on rock fracture, Nancy, October 1971. International society for rock mechanics (ISRM), 1, paper no. II–8, pp 129–136

  • Hoek E (1983) Strength of jointed rock masses. Geotechnique 33(3):187–223

    Article  Google Scholar 

  • Hoek E (2007) Practical rock engineering. http://www.rocscience.com

  • Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 106(GT9):1013–1035

    Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion 2002 edition. In: Proceedings of the 5th North American Rock mechanics symposium and the 17th Tunnelling Association of Canada Conference: NARMS-TAC, Toronto

  • Krabbenhoft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44(5):1533–1549

    Article  Google Scholar 

  • Kumar J, Mohapatra D (2017) Lower-bound finite elements limit analysis for Hoek–Brown materials using semidefinite programming. J Eng Mech 143(9):04017077

    Article  Google Scholar 

  • Kumar J, Mohapatra D (2018) Closure to lower bound finite elements limit analysis for Hoek–Brown materials using semidefinite programming by J Kumar and D Mohapatra. J Eng Mech 144(7):07018002

    Article  Google Scholar 

  • Li AJ, Merifield RS, Lyamin AV (2008) Stability charts for rock slopes based on the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 45(5):689–700

    Article  Google Scholar 

  • Li LC, Tang CA, Zhu WC, Liang ZZ (2009) Numerical analysis of slope stability based on the gravity increase method. Comput Geotech 36:1246–1258

    Article  Google Scholar 

  • Lian JJ, Li Q, Deng XF, Zhao GF, Chen ZY (2018) A numerical study on toppling failure of a jointed rock slope by using the distinct lattice spring model. Rock Mech Rock Eng 51(2):513–530

    Article  Google Scholar 

  • Makrodimopoulos A, Martin CM (2006) Lower bound limit analysis of cohesive frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604–634

    Article  Google Scholar 

  • Merifield RS, Lyamin AV, Sloan SW (2006) Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek–Brown yield criterion. Int J Rock Mech Min Sci 43(6):920–937

    Article  Google Scholar 

  • Mohapatra D, Kumar J (2019a) Smoothed finite element approach for kinematic limit analysis of cohesive frictional materials. Eur J Mech A Solids 76:328–345

    Article  Google Scholar 

  • Mohapatra D, Kumar J (2019b) Collapse loads for rectangular foundations by three dimensional upper bound limit analysis using radial point interpolation method. Int J Numer Anal Methods Geomech 43(2):641–660

    Article  Google Scholar 

  • MOSEK ApS (2019) The MOSEK optimization tools manual version. http://www.mosek.com

  • Nesterov YE, Todd MJ (1998) Primal-dual interior-point methods for self-scaled cones. SIAM J Optim 8(2):324–364

    Article  Google Scholar 

  • Shi GH, Goodman RE (1985) Two dimensional discontinuous deformation analysis. Int J Numer Anal Meth Geomech 9(6):541–556

    Article  Google Scholar 

  • Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12:61–77

    Article  Google Scholar 

  • Sloan SW (2013) Geotechnical stability analysis. Géotechique 63(7):531

    Article  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Soft 11(1–4):625–653

    Article  Google Scholar 

  • Suchowerska AM, Merifield RS, Carter JP, Clausen J (2012) Prediction of underground cavity roof collapse using the Hoek–Brown failure criterion. Comput Geotech 44:93–103

    Article  Google Scholar 

  • Swan CC, Seo Y (1999) Limit state analysis of earthen slopes using dual continuum/FEM approaches. Int J Numer Anal Methods Geomech 23(12):1359–1371

    Article  Google Scholar 

  • Tang C, Toh K, Phoon K (2014) Axisymmetric lower-bound limit analysis using finite elements and second order cone programming (SOCP). J Eng Mech 140(2):268–278

    Article  Google Scholar 

  • Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Progr 95(2):189–217

    Article  Google Scholar 

  • Ukritchon B, Keawsawasvong S (2018) Three-dimensional lower bound finite element limit analysis of Hoek–Brown material using semidefinite programming. Comput Geotech 104:248–270

    Article  Google Scholar 

  • Ukritchon B, Keawsawasvong S (2019) Stability of unlined square tunnels in Hoek–Brown rock masses based on lower bound analysis. Comput Geotech 105:249–264

    Article  Google Scholar 

  • Zhang R, Chen G, Zou J, Zhao L, Jiang C (2019) Study on roof collapse of deep circular cavities in jointed rock masses using adaptive finite element limit analysis. Comput Geotech 111:42–55

    Article  Google Scholar 

  • Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and nonassociated viscoplasticity in soil mechanics. Géotechnique 25(4):671–689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyant Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Implementation of the PCP in MOSEK

Appendix: Implementation of the PCP in MOSEK

The present investigation utilizes the optimization toolbox: MOSEK in MATLAB since it can handle the PCP which is found to be robust and computationally very efficient (Makrodimopoulos and Martin 2006; Ukritchon and Keawsawasvong 2018; Mohapatra and Kumar 2019a). To solve the PCP in MOSEK, the input needs to be specified in a particular way. The objective function, as given in Eq. (22), is defined by the command ‘prob.c’. The matrices containing inequality or equality constraints are defined with ‘prob.a’ command. The lower and upper bounds of the constraints are specified by ‘prob.blc’ and ‘prob.buc’, respectively. The corresponding bounds on the variables are defined by ‘prob.blx’ and ‘prob.bux’. The cones are prescribed using four different cell arrays: ‘prob.cones.type’, ‘prob.cones.conepar’, ‘prob.cones.sub’ and ‘prob.cones.subptr’. The array ‘prob.cones.type’ specifies the type of cone and it takes the command (1) ‘res.symbcon.MSK_CT_QUAD’ for the second-order cone, (2) ‘res.symbcon.MSK_CT_RQUAD’ for the rotated quadratic cone, and (3) ‘res.symbcon.MSK_CT_PPOW’ for the power cone. The value of the power term in the power cone is specified by ‘prob.cones.conepar’. The variables related to a particular cone are specified by ‘prob.cones.sub’ and the change in the cone is indicated in ‘prob.cones.subptr’. The optimal solution of the objective function is obtained through ‘res.sol.itr.pobjval’ command. The primal as well as dual optimal solutions of the variables are finally reported in ‘res.sol.itr.xx’ and ‘res.sol.itr.y’, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Rahaman, O. Lower Bound Limit Analysis Using Power Cone Programming for Solving Stability Problems in Rock Mechanics for Generalized Hoek–Brown Criterion. Rock Mech Rock Eng 53, 3237–3252 (2020). https://doi.org/10.1007/s00603-020-02099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02099-y

Keywords

Navigation