Skip to main content
Log in

Tunneling in Squeezing Ground: Effect of the Excavation Method

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Tunnel excavation in squeezing ground exhibits large time-dependent and often anisotropic deformation. Within the context of the Fréjus road tunnel and its safety gallery excavated under the Alps between France and Italy, an interesting configuration of two parallel tunnels under squeezing ground conditions is observed. The special feature of this case study lies in the fact that both tunnels have been excavated in similar geotechnical conditions but with different excavation techniques. The road tunnel was excavated with conventional drill and blast methods in the 70s, whereas the safety gallery was excavated between 2009 and 2016 with a single-shield tunnel boring machine (TBM). This paper presents monitoring data processing and numerical simulations of both tunnels with the aim of studying the influence of the excavation method on the time-dependent tunnel response. A calibration of a visco-elasto-plastic anisotropic constitutive model based on the back-analysis of convergence measurements retrieved during the excavation of the Fréjus road tunnel is carried out. The identified ground behavior can be extrapolated to the parallel zones of the safety gallery. In particular, we are interested in the prediction of the stress state in the segmental lining of the gallery during its excavation and the comparison with in situ measurements. It is shown that the time-dependent behavior of the ground is affected by the excavation technique. Finally, an attempt to predict the long-term response of both tunnels is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\(C_{\infty x}\) :

Instantaneous convergence obtained in the case of an infinite rate of face advance (no time-dependent effect)

X :

Parameter related to the distance of influence of the tunnel face

T :

Parameter related to time-dependent behavior of the system (rock mass formation support)

m :

Parameter which represents the relationship between the long-term total convergence and the instantaneous convergence

n :

Form factor of the fitting law which is often taken equal to 0.3

β :

Anisotropy ratio of the convergence data

ξ :

Variability index of the convergence data

\(E\) :

Young’s modulus of the solid matrix

v :

Poisson’s ratio of the solid matrix

\(K\) :

Elastic bulk modulus of the solid matrix

\(G_{\text{K}}\) :

Kelvin shear modulus of the solid matrix

\(\eta_{\text{K}}\) :

Kelvin dynamic viscosity of the solid matrix

\(G_{\text{M}}\) :

Elastic shear modulus of the solid matrix

\(\eta_{\text{M}}\) :

Maxwell dynamic viscosity of the solid matrix

c :

Cohesion of the solid matrix

ϕ :

Friction angle of the solid matrix

\(\psi\) :

Dilation angle of the solid matrix

\(\sigma_{t}\) :

Tension limit of the solid matrix

\(c_{j}\) :

Cohesion of the weak planes

\(_{j}\) :

Friction angle of the weak planes

\(\psi_{j}\) :

Dilation angle of the weak planes

\(\sigma_{tj}\) :

Tension limit of the weak planes

α :

Variability index of the constitutive parameters (describing the damage degree of the rock mass)

References

  • Barla G (2001) Tunnelling under squeezing rock conditions, Chap 3. In: Kolymbas D (ed) Tunnelling mechanics - advances in geotechnical engineering and tunnelling. Euro-summer-School in Tunnel Mechanics, Innsbruck. Logos Verlag Berlin, pp 169–268

  • Barla G, Bonini M, Debernardi D (2008) Time Dependent Deformations in Squeezing Tunnels. 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). Goa, India

  • Barla G, Bonini M, Debernardi D (2010) Time dependent deformations in squeezing tunnels. Int J Geoeng Case Hist 2(1):40–65

    Google Scholar 

  • Barla G, Debernardi D, Sterpi D (2011) Time-dependent modeling of tunnels in squeezing conditions. Int J Geomech ASCE 12:697–710

    Article  Google Scholar 

  • Beau J-R, Cabanius J, Courtecuisse G, Foumaintraux D, Gesta P, Levy M, Neraud C, Panet M, Péra J, Tincelin E, Vouille G (1980) Tunnel routier du Fréjus: les mesures géotechniques effectuées sur le chantier français et leur application pour la détermination et l’adaptation du soutènement provisoire. Revue Française de Géotechnique 12:57–82 (in French)

    Article  Google Scholar 

  • Billaux D, Cundall P (1993) Simulation des géomatériaux par la méthode des éléments Lagrangiens. Rev Fr Géotech 63:9–21

    Article  Google Scholar 

  • Boidy E (2002) Modélisation numérique du comportement différé des cavités souterraines. Doctoral Thesis Université Joseph-Fourier-Grenoble I, France (In French)

  • Cartney SA (1977) The ubiquitous joint method. Cavern design at Dinorwic power station. Tunn Tunnel 9:54–57

    Google Scholar 

  • De la Fuente M, Sulem J, Taherzadeh R, Subrin D (2017) Traitement et rétro-analyse des auscultations réalisées dans le tunnel routier du Fréjus et sa galerie de sécurité lors de leurs constructions respectives. Congrés International AFTES 2017, Paris 155 (in French)

  • De la Fuente M, Taherzadeh R, Sulem J, Subrin D (2018a) Analysis and comparison of the measurements of Fréjus road tunnel and of its safety gallery. In: Litvinenko V (ed) Geomechanics and geodynamics of rock masses, vol 2, Eurock symposium 2018. CRC Press, Saint Petersburg, pp 1143–1148

  • De la Fuente M, Taherzadeh R, Sulem J, Subrin D (2018b) Numerical back-analysis of the short-term convergence data of sections within zone A (from chainage 1905 to chainage 2723) in the Fréjus road tunnel, https://doi.org/10.5281/zenodo.1503642 (Online resource)

  • Barla G, Bonini M, Debernardi, D (2007) Modelling of tunnels in squeezing rock. ECCOMAS Thematic Conference on Computational Methods. Tunnelling (EURO:TUN 2007). Vienna, Austria, August 27–29

  • Eurocode 2 (2005) Design of concrete structures. https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf

  • Guayacán-Carrillo L-M, Sulem J, Seyedi DM, Ghabezloo S, Armand G (2018) Size effect on the time-dependent closure of drifts in Callovo-Oxfordian claystone. Int J Geomech 18(10):04018128

    Article  Google Scholar 

  • Hasanpour R, Rostami J, Barla G (2015) Impact of advance rate on entrapment risk of a double-shielded TBM in squeezing ground. Rock Mech Rock Eng 48(3):1115–1130

    Article  Google Scholar 

  • ITASCA (2011) Fast Lagrangian analysis of continua (FLAC3D). Itasca Consulting Group Inc, Minnesota

    Google Scholar 

  • Kazakidis VN, Diederichs MS (1993) Technical note: understanding jointed rock mass behavior using a ubiquitous joint approach. Int J Rock Mech Mining Sci 30:163–172

    Article  Google Scholar 

  • Lévy M, Matheron P, Demorieux JM, Courtecuisse G (1979) Les travaux du tunnel routier du Fréjus. In: Revue Travaux. Juillet-Août 1979, pp 1–11. (In French)

  • Li G, Li H, Kato H, Mizuta Y (2003) Application of ubiquitous joint model in numerical modeling of Hilltop Mines in Japan. Chin J Rock Mech Eng 22(6):951–956

    Google Scholar 

  • Lunardi P (1980) Application de la mécanique des roches aux tunnels autoroutiers-exemple des tunnels du Fréjus (côté Italie) et du Gran Sasso. Revue Française de Géotechnique 12:5–43 (in French

    Article  Google Scholar 

  • Mezger F, Anagnostou G, Ziegler HJ (2013) The excavation-induced convergences in the Sedrun section of the Gotthard Base Tunnel. Tunn Undergr Space Technol 38:447–463

    Article  Google Scholar 

  • Panet M (1996) Two case histories of tunnels through squeezing rocks. Rock Mech Rock Eng 29(3):155–164

    Article  Google Scholar 

  • Pellet F (2009) Contact between a tunnel lining and a damage-susceptible viscoplastic medium. Comput Model Eng Sci 52(3):279–295

    Google Scholar 

  • Plana D, López C, Cornelles J, Muñoz P (2004) Numerical analysis of a tunnel in an anisotropy rock mass. Envalira Tunnel (Principality of Andorra). Engineering Geology for Infrastructure Planning in Europe. Springer, Berlin, pp 153–161

  • Ramoni M, Anagnostou G (2006) On the feasibility of TBM drives in squeezing ground. Tunn Undergr Space Technol 21(3):262

    Article  Google Scholar 

  • Ramoni M., Anagnostou G (2008) TBM drives in squeezing ground-Shield–Rock interaction. Building underground for the future; AFTES International Congress Monaco, Montecarlo, 163–172; Edition specifique Limonest

  • Ramoni M, Anagnostou G (2010) Thrust force requirements for TBMs in squeezing ground. Tunn Undergr Space Technol 25(4):433–455

    Article  Google Scholar 

  • Russo G, Repetto L, Piraud J, Laviguerie R (2009) Back-analysis of the extreme squeezing conditions in the exploratory adit to the Lyon-Turin base tunnel, (May) 9–14

  • Sharifzadeh M, Tarifard A, Moridi MA (2013) Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunn Undergr Space Technol 38:348–356

    Article  Google Scholar 

  • SITAF (1982) Traforo autostradale del Fréjus (in Italian)

  • Steiner W (1996) Tunnelling in squeezing rocks: case histories. Rock Mech Rock Eng 29(4):211–246

    Article  Google Scholar 

  • Sulem J (2013) Tunnel du Fréjus: Mesures géotechniques et interprétation, Manuel de Mécanique des Roches Tome IV, chap. 7, Presse des Mines

  • Sulem J, Panet M, Guenot A (1987) Closure analysis in deep tunnels. Int J Rock Mech Min Sci Geomech Abstr 24(3):145–154

    Article  Google Scholar 

  • Tran-Manh H, Sulem J, Subrin D, Billaux D (2015) Anisotropic time-dependent modeling of tunnel excavation in squeezing ground. Rock Mech Rock Eng 48(6):2301–2317

    Article  Google Scholar 

  • Vinnac A (2012) Rétro-analyse du creusement au tunnelier de la galerie de sécurité du tunnel routier du Fréjus. Mémoire de mastère spécialisé ‘Tunnels et Ouvrages souterrains’, ENTPE (in French)

  • Wang TT, Huang TH (2009) A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. Int J Rock Mech Min Sci 46(3):521–530

    Article  Google Scholar 

  • Wang TT, Huang TH (2013) Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: theory analysis and numerical modeling. Rock Mech Rock Eng 47(2):643–657

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the PhD thesis of the first author, carried out at Ecole des Ponts ParisTech in partnership with TRACTEBEL ENGIE and CETU (French centre for tunnels studies). The authors wish to thank the SFTRF (Société Française du Tunnel Routier du Fréjus) for providing monitoring data on both tunnels and ITASCA for supporting the first author through the Itasca Education Partnership Program (IEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Sulem.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Fuente, M., Sulem, J., Taherzadeh, R. et al. Tunneling in Squeezing Ground: Effect of the Excavation Method. Rock Mech Rock Eng 53, 601–623 (2020). https://doi.org/10.1007/s00603-019-01931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01931-4

Keywords

Navigation