Skip to main content
Log in

Coupling Analysis for Rock Mass Supported with CMC or CFC Rockbolts Based on Viscoelastic Method

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Rockbolts have been widely used in rock reinforcement for high-stress conditions in mining and civil engineering. However, the interaction mechanism between the rockbolt and the rock mass is still unclear. To fully understand the coupling mechanism of a rock mass supported with rockbolts, this article studied the coupling effect and the time-dependent behavior of a rock mass supported with continuously mechanically coupled (CMC) or continuously frictionally coupled (CFC) rockbolts. The elastic solutions of the interaction model were obtained in the coupled state. In addition, viscoelastic analytical solutions were used to describe the rheological properties of the coupling model, and the solutions were acquired by setting the constitutive models of the rockbolt and rock mass to a one-dimensional Kelvin model and a three-dimensional Maxwell model based on the material properties. According to the proposed coupling model, the rock mass stress and displacement fields, and the rockbolt axial force strongly depend on the relative deformation modulus of the rock mass and rockbolt. In addition, a lower viscosity coefficient of the rockbolt or rock mass produces a larger rock mass displacement. Moreover, as the relative deformation modulus increases, the distance to the neutral point beyond the rockbolt head increases. Furthermore, the position of the neutral point is independent of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A b :

Cross-sectional area of the rockbolt

K :

Bulk modulus of the rock mass

ρ :

Radial coordinate

r :

Tunnel radius

d :

Rockbolt diameter

σ 0 :

Initial rock mass stress

\(u_{{\rho_{0} }}\) :

Rock mass displacement under the initial rock mass stress

\(\varepsilon_{{\theta_{0} }}\) :

Rock mass tangential strain under the initial rock mass stress

\(u_{{\rho_{2} }}^{\prime }\) :

Change of displacement in the unreinforced zone

\(\varepsilon_{{\rho_{2} }}^{\prime }\) :

Change of radial strain in the unreinforced zone

\(\sigma_{{\theta_{2} }}^{\prime }\) :

Change of tangential strain in the unreinforced zone

\(\sigma_{{\rho_{1} }}\) :

Radial stress in the reinforced zone

\(\sigma_{{\theta_{1} }}\) :

Tangential stress in the reinforced zone

\(\varepsilon_{{\rho_{1} }}\) :

Radial strain in the reinforced zone

\(\varepsilon_{{\theta_{1} }}\) :

Tangential strain in the reinforced zone

\(u_{{\rho_{1} }}\) :

Rock mass displacement in the reinforced zone

ε :

Axial strain of the rockbolt

S θ :

Rockbolt spacing in the tangential direction

t :

Time

G r :

Shear modulus of the rock mass

σ ij :

Stress tensor

T N :

Axial force of the rockbolt in the neutral point

T 1 :

Rockbolt axial force in front of the neutral point

\(\overline{{P_{{{\text{a}}K}} }}^{\prime } (s), \, \overline{{Q_{{{\text{a}}K}} }}^{\prime } (s)\) :

Operator function of the rockbolt viscoelastic constitutive model after Laplace transformation

τ a :

Additional shear stress beyond the neutral point

\(\tau_{{{\text{B}}_{ 1} }}\) :

Shear stress before the neutral point

p k, q k :

Constant parameters of the rockbolt material

E r :

Deformation modulus of the rock mass

E b :

Deformation modulus of the rockbolt

Θ :

Angular coordinate

R :

Radius of the reinforced zone

L :

The length of the rockbolt

μ r :

Poisson’s ratio of the rock mass

\(\varepsilon_{{\rho_{0} }}\) :

Rock mass radial strain under the initial rock mass stress

\(u_{{\rho_{1} }}^{\prime }\) :

Change of displacement in the reinforced zone

\(\varepsilon_{{\rho_{1} }}^{\prime }\) :

Change of radial strain in the reinforced zone

\(\varepsilon_{{\theta_{1} }}^{\prime }\) :

Change of tangential strain in the reinforced zone

c :

Distance from the concentrated force to the rockbolt end

\(\sigma_{{\rho_{2} }}\) :

Radial stress in the unreinforced zone

\(\sigma_{{\theta_{2} }}\) :

Tangential stress in the unreinforced zone

\(\varepsilon_{{\rho_{2} }}\) :

Radial strain in the unreinforced zone

\(\varepsilon_{{\theta_{2} }}\) :

Tangential strain in the unreinforced zone

\(u_{{\rho_{2} }}\) :

Radial displacement in the unreinforced zone

\(\varepsilon_{{\rho_{0} }}\) :

Initial strain of the rock mass under the initial stress

S z :

Rockbolt spacing in the longitudinal direction

σ b :

Axial stress of the rockbolt

u :

Displacement in the semi-infinite plane under the Mindlin solution

ε ij :

Strain tensor

ρ n :

The position of the neutral point

T 2 :

Rockbolt axial force beyond the neutral point

\(\begin{aligned} \overline{P}^{\prime } (s),\;\;\overline{Q}^{\prime } (s) \hfill \\ \overline{P}^{\prime \prime } (s),\;\;\overline{Q}^{\prime \prime } (s) \hfill \\ \end{aligned}\) :

Operator function of the rock mass viscoelastic constitutive model after Laplace transformation

τ b :

Shear stress caused by the rock mass deformation

\(\tau_{{{\text{B}}_{ 2} }}\) :

Shear stress beyond the neutral point

D :

Differential operator

References

  • Bjornfot F, Stephansson O (1984) Interaction of grouted rock bolts and hard rock masses at variable loading in a test drift of the Kiirunavaara Mine, Sweden. In: Stephansson P (ed) Proceedings of the International Symposium on rock bolting. Rotterdam, Balkema, pp 377–395

  • Cai Y, Esakia Tetsuro, Jiang YJ (2004) Arock bolt and rock mass interaction model. Int J Rock Mech Min Sci 41(2004):1055–1067

    Article  Google Scholar 

  • Cai Y, Jiang YJ, Djamaluddin I et al (2015) An analytical model considering interaction behavior of grouted rock bolts for convergence–confinement method in tunneling design. Int J Rock Mech Min Sci 76:112–126

    Article  Google Scholar 

  • Chen J, Hagan PC, Saydam S (2016) Parametric study on the axial performance of a fully grouted cable bolt with a new pull-out test. Int J Min Sci Technol 26:53–58

    Article  Google Scholar 

  • Chen Y, Li CC (2015) Performance of fully encapsulated rebar bolts and D-bolts under combined pull-and-shear loading. Tunn Undergr Space Technol 45:99–106

    Article  Google Scholar 

  • Freeman TJ (1978) The behavior of fully-bonded rock bolts in the Kielder experimental tunnel. Tunnels Tunnel 1978:37–40

    Google Scholar 

  • Ghaboussi J, Gioda G (1977) On the time-dependent effects in advancing tunnels. Int J Numer Methods Geomech 2:249–269

    Article  Google Scholar 

  • Goodman R (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  • Han W, Wang G, Liu CZ et al (2018) Time-dependent behavior of a circular symmetrical tunnel supported with rockbolts. Symmetry-Basel 6(9):381

    Article  Google Scholar 

  • Huang JB, Cen S, Shang Y et al (2017) A new triangular hybrid displacement function element for static and free vibration analyses of Mindlin-Reissner Plate. Latin Am J Solids Struct 14(5):765–804

    Article  Google Scholar 

  • Kovári K (2003) History of the sprayed concrete lining method—part I. Milestones up to the 1960s. Tunn Undergr Space Technol 18:57–69

    Article  Google Scholar 

  • Ladanyi B (1993) Time dependent response of rock around tunnel. In: Hudson J (ed) Comprehensive rock engineering, vol 2. Pergamon Press, Oxford, pp 77–112

    Google Scholar 

  • Ladanyi B, Gill D (1984) Tunnel lining design in creeping rocks. In: symposium on design and performance of underground excavations. ISRM, Cambridge

  • Li C, Stillborg B (1999) Analytical models for rock bolts. Int J Rock Mech Min Sci 36:1013–1029

    Article  Google Scholar 

  • Ma S, Nemcik J, Aziz N (2013) An analytical model of fully grouted rock bolts subjected to tensile load. Constr Build Mater 49:519–526

    Article  Google Scholar 

  • Mindlin RD (1953) Force at a point in the interior of a semi-infinite solid. In: British Columbia Univvancouver Dept of Civil Engineering

  • Nomikos P, Rahmannejad R, Sofianos A (2011) Supported axisymmetric tunnels within linear viscoelastic Burgers rocks. Rock Mech Rock Eng 44(5):553–564

    Article  Google Scholar 

  • Panet M (1993) Understanding deformations in tunnels. In: Hudson J (ed) Comprehensive rock engineering, vol 1. Pergamon Press, Oxford, pp 663–690

    Google Scholar 

  • Peila D, Oreste P, Rabajuli G, Trabucco E (1995) The pre-tunnel method, a new Italian technology for full-face tunnel excavation: a numerical approach to design. Tunnel Undergr Space Technol 10:3

    Article  Google Scholar 

  • Phillips SHE (1970) Factors affecting the design of anchorages in rock [R], London: cementation Research Ltd

  • Stillborg B (1994) Professional users handbook for rock bolting, 2nd edn. Trans Tech Publications, Clausthal-Zeuerfeld, pp 30–42

    Google Scholar 

  • Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent displacements in circular tunnel. Int J Rock Mech Min Sci Geomech Abstr 24(3):155–164

    Article  Google Scholar 

  • Sun J (2007) Rock rheological mechanics and its advance in engineering applications. Chin J Rock Mech Eng 26(6):1081–1106

    Google Scholar 

  • Tao Z, Chen JX (1984) Behavior of rock bolting as tunneling support. In: Stephansson O (ed) Proceedings of the international symposium on rock bolting. Balkema, Rotterdam, pp 87–92

  • Teymen A, Kılıç A (2018) Effect of grout strength on the stress distribution (tensile) of fully-grouted rockbolts. Tunn Undergr Space Technol 77:280–287

    Article  Google Scholar 

  • Wang ZY, Li YP (2008) Rock rheology theory and numerical simulation. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Wang G, Liu CZ, Jiang YJ et al (2015) Rheological model of DMFC Rockbolt and Rockmass in a circular tunnel. Rock Mech Rock Eng 48:2319–2357

    Article  Google Scholar 

  • Wang G, Liu CZ, Wu XZ (2014) Coupling rheological model for end-anchored bolt and surrounding rock mass. Chin J Geotech Eng 36(2):363–375

    Google Scholar 

  • Windsor CR, Thompson AG (1993) Rock reinforcement—technology, testing, design and evaluation. In: Hudson JA (ed) Comprehensive rock engineering, principles, practice & projects, vol 4. Pergamon Press, Oxford, pp 451–484

    Google Scholar 

  • Wu XZ, Jiang YJ, Guan ZC, Wang G (2018) Estimating the support effect of the energy-absorbing rock bolt based on the mechanical work transfer ability. Int J Rock Mech Min Sci 103:168–178

    Article  Google Scholar 

  • Yao XC, Li N, Chen YS (2005) Theoretical solution for shear stresses on interface of fully grouted bolt in tunnels. Chin J Rock Mech Eng 24(13):2272–2276

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (no. 51479108) and the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elastic solutions in the reinforced zone of the rock mass supported with CFC or CMC rockbolts are shown below.

The radial stress can be expressed as

$$\sigma_{{\rho_{1} }} = C_{2} \cdot \ln \rho + C_{3} \cdot \rho^{{\frac{{ - 2\xi \mu_{\text{r}}^{2} + ( - \xi + 2E_{\text{r}} )\mu_{\text{r}} + \xi - 2E_{\text{r}} }}{{2\xi \mu_{\text{r}}^{2} + (\xi - E_{\text{r}} )\mu_{\text{r}} - \xi + E_{\text{r}} }}}} \; + \;C_{1} .$$
(45)

The tangential stress can be written as

$$\begin{aligned} \sigma_{{\theta_{1} }} & = \frac{1}{{\left( {\left( {1 - \mu_{\text{r}} } \right)E_{\text{r}} + \xi \mu_{\text{r}} \left( {1 + \mu_{\text{r}} } \right)} \right)E_{\text{r}} }}C_{3} \cdot E_{\text{r}} \left( {1 - \mu_{\text{r}} } \right)\left( { - E_{\text{r}} + \xi \left( {1 + \mu_{\text{r}} } \right)} \right)\rho^{{\frac{{ - 2\xi \mu_{\text{r}}^{2} + ( - \xi + 2E_{\text{r}} )\mu_{\text{r}} + \xi - 2E_{\text{r}} }}{{2\xi \mu_{\text{r}}^{2} + (\xi - E_{\text{r}} )\mu_{\text{r}} - \xi + E_{\text{r}} }}}} \\ \, & \;\;\;{ + }\,\,2\left( {\frac{1}{2}C_{2} \cdot E_{\text{r}} \ln \rho + \frac{1}{2}\left( {C_{1} + C_{2} } \right)E_{\text{r}} + \xi \left( {\mu_{\text{r}} - \frac{1}{2}} \right)C_{2} \left( {1 + \mu_{\text{r}} } \right)} \right) \cdot (1 - \mu_{\text{r}} )E_{\text{r}} + \xi \mu_{\text{r}} (1 + \mu_{\text{r}} ). \\ \end{aligned}$$
(46)

The radial strain can be expressed as

$$\begin{aligned} \varepsilon_{{\rho_{1} }} & = - \frac{1}{{\left( {\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - E_{\text{r}} } \right)E_{\text{r}}^{2} }}\left( {2\left( { - \frac{1}{2}C_{3} E_{\text{r}}^{2} \left( {\xi \mu_{\text{r}} - 1} \right)\rho^{{\frac{{ - 2\xi \mu_{\text{r}}^{2} + ( - \xi - 2E_{\text{r}} )\mu_{\text{r}} + \xi + 2E_{\text{r}} }}{{2\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - \xi - E_{\text{r}} }}}} } \right)} \right. \\ & \;\; + \left( {\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - E_{\text{r}} } \right)\left( {\left( {\mu_{\text{r}} - \frac{1}{2}} \right)E_{\text{r}} C_{2} \ln \rho - C_{2} \xi \mu_{\text{r}}^{3} + \frac{1}{2}C_{2} \xi \mu_{\text{r}}^{2} } \right. \\ & \;\; + \left( {\left( {\frac{3}{2}C_{2} + C_{1} } \right)E_{\text{r}} + C_{2} \xi } \right)\mu_{\text{r}} + \left( { - \frac{1}{2}C_{1} - C_{2} } \right)\left. {\left. {E_{\text{r}} - \frac{1}{2}C_{2} \xi } \right)} \right)\left. {\left( {1 + \mu_{r} } \right)} \right). \\ \end{aligned}$$
(47)

The tangential strain can be expressed as

$$\begin{aligned} \varepsilon_{{\theta_{1} }} & = - \frac{1}{{(\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - E_{\text{r}} )E_{\text{r}}^{2} }}2(1 + \mu_{\text{r}} )\left( {E_{\text{r}} C_{3} \left( {\xi \mu_{\text{r}}^{2} + \frac{1}{2}\mu_{\text{r}} \left( {\xi + E_{\text{r}} } \right)} \right.} \right. \\ & \;\; - \frac{1}{2}\left( {E_{\text{r}} + \xi } \right)\rho^{{\frac{{ - 2\xi \mu_{\text{r}}^{2} + ( - \xi - 2E_{\text{r}} )\mu_{\text{r}} + \xi + 2E_{\text{r}} }}{{2\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - \xi - E_{\text{r}} }}}} + \left( {\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{\text{r}} - E_{\text{r}} } \right)\left( {\left( {\mu_{\text{r}} - \frac{1}{2}} \right)E_{\text{r}} C_{2} \ln \rho } \right. \\ & \;\;\left. { - C_{2} \xi \mu_{\text{r}}^{3} + \frac{1}{2}C_{2} \xi \mu_{\text{r}}^{2} + \left( {\left( {\frac{1}{2}C_{2} + C_{1} } \right)E_{\text{r}} + C_{2} \xi } \right)\mu_{\text{r}} - \frac{1}{2}(C_{1} + C_{2} )E_{\text{r}} - \frac{1}{2}C_{2} \xi } \right). \\ \end{aligned}$$
(48)

The displacement can be written as

$$\begin{aligned} u_{{\rho_{1} }} & = - \frac{1}{{((\mu_{r} - 1)E_{\text{r}} + \xi \mu_{\text{r}} (1 + \mu_{\text{r}} ))E_{\text{r}}^{2} }}2\rho (E_{\text{r}} C_{3} ((\frac{1}{2}\mu_{\text{r}} - 1)E_{\text{r}} + \xi \left( {\mu_{\text{r}} - \frac{1}{2}} \right)(1 + \mu_{\text{r}} )) \\ & \quad \rho^{{\frac{{ - 2\xi \mu_{\text{r}}^{2} + ( - \xi - 2E_{\text{r}} )\mu_{\text{r}} + \xi + 2E_{\text{r}} }}{{2\xi \mu_{\text{r}}^{2} + (\xi + E_{\text{r}} )\mu_{r} - \xi - E_{\text{r}} }}}} + ((\mu_{\text{r}} - 1)E_{\text{r}} + \xi \mu_{\text{r}} (1 + \mu_{\text{r}} ))(\left( {\mu_{\text{r}} - \frac{1}{2}} \right)E_{\text{r}} C_{2} \ln \rho + \left( {\left( {\frac{1}{2}C_{2} + C_{1} } \right)\mu_{\text{r}} } \right. \\ & \quad \left. { - \frac{1}{2}C_{1} - \frac{1}{2}C_{2} } \right)E_{\text{r}} - \xi \left( {\mu_{\text{r}} - \frac{1}{2}} \right)(\mu_{\text{r}} - 1)(1 + \mu_{\text{r}} )C_{2} ))(1 + \mu_{\text{r}} ). \\ \end{aligned}$$
(49)

The values of the parameters A, C1, C2 and C3 in 4549 are given below:

$$A = \frac{{\left( \begin{aligned} & 32(\frac{1}{2}r^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} (\mu _{r} - \frac{1}{2})E_{r} ((\mu _{r}^{3} + \frac{1}{2}\mu _{r}^{2} - \frac{1}{2}\mu _{r} )\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} ) \\ & ((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )\mu _{r}^{2} R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} + r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} ((\mu _{r} - \frac{1}{2}) \\ & ((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )\mu _{r}^{2} \ln \left( R \right) \\ & - (\mu _{r} - \frac{1}{2})((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )\mu _{r}^{2} \ln \left( r \right) \\ & - \frac{1}{2}E_{r} ((\mu _{r} - \frac{1}{2})^{2} (1 + \mu _{r} )^{2} (\mu _{r}^{4} - \frac{1}{4}\mu _{r}^{3} - \frac{1}{4}\mu _{r}^{2} - \frac{1}{4}\mu _{r} + \frac{1}{4})\xi ^{2} + \frac{1}{2}(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )^{2} (\mu _{r} - 1)E_{r} (\mu _{r}^{3} + \frac{1}{2}\mu _{r}^{2} - 2\mu _{r} + 1)\xi \\ & + \frac{1}{2}(\mu _{r} - 1)^{2} E_{r}^{2} (\mu _{r}^{3} - \frac{3}{4}\mu _{r}^{2} - \frac{1}{2}\mu _{r} + \frac{1}{2}))))\sigma _{0} R^{2} \\ \end{aligned} \right)}}{\begin{aligned} & 8r^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} E_{r} ((\mu _{r}^{5} - \frac{3}{4}\mu _{r}^{3} + \frac{3}{4}\mu _{r}^{2} + \frac{1}{4}\mu _{r} - \frac{1}{4})\xi + (\mu _{r}^{3} - \frac{1}{2}\mu _{r}^{2} - \mu _{r} + 1)(\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} \\ & + 8((\mu _{r}^{2} + 1)(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )\xi + \mu _{r}^{2} E_{r} (\mu _{r} - 1))(((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln \left( R \right) - ((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi \\ & + (\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln \left( r \right) - \frac{1}{2}E_{r} ((\mu _{r}^{3} + \frac{1}{2}\mu _{r}^{2} - \frac{1}{2}\mu _{r} )\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} ))r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} \\ \end{aligned} },$$
$$C_{1} = \frac{{\left( \begin{gathered} 8( - 2r^{{\frac{{^{{2E_{{r + \xi }} }} }}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} \left( { - \left( {\mu _{r} - \frac{1}{2}} \right)E_{r} \left( {\left( {\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2}} \right)\xi + (\mu _{r} - 1)E_{r} } \right)\mu _{r} ^{2} \ln (R) + (\mu _{{\text{r}}} - \frac{1}{2}} \right)^{2} (1 + \mu _{{\text{r}}} )^{2} (\mu _{{\text{r}}} - 1)\mu _{{\text{r}}} ^{2} \xi ^{2} \hfill \\ + \left( {\mu _{{\text{r}}} - \frac{1}{2}} \right)\left( {\mu _{r} ^{4} - \frac{7}{2}\mu _{r} ^{3} + \frac{7}{4}\mu _{r} ^{2} - \frac{1}{4}} \right)(1 + \mu _{r} )E_{r} \xi - (\mu _{r} - 1)E_{r} ^{2} \left( {\mu _{r} ^{3} - \frac{1}{2}\mu _{r} ^{2} - \frac{1}{2}\mu _{r} + \frac{1}{2}} \right))((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{{\text{r}}} - 1)E_{{\text{r}}} )R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} + \hfill \\ ((\mu _{r} ^{2} + 1)(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )\xi + \mu _{r} ^{2} E_{r} (\mu _{r} - 1))(\xi (\mu _{r} - \frac{1}{2})(1 + \mu _{r} )((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )\ln (R) - ((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} ) \hfill \\ ((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln (r) - \frac{1}{2}\xi (1 + \mu _{r} )(\mu _{r} - 1)((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + 2E_{r} (\mu _{r} - \frac{3}{4})))r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{^{{2E_{r} }} + \xi }}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} )\sigma _{0} \hfill \\ \end{gathered} \right)}}{{\left( \begin{gathered} 8r^{{\frac{{^{{2E_{r} + \xi }} }}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} E_{r} ((\mu _{r} ^{5} - \frac{3}{4}\mu _{r} ^{3} + \frac{3}{4}\mu _{r} ^{2} + \frac{1}{4}\mu _{r} - \frac{1}{4})\xi + (\mu _{r} ^{3} - \frac{1}{2}\mu _{r} ^{2} - \mu _{r} + 1)(\mu _{r} - 1)E_{r} )((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} + \hfill \\ 8((\mu _{r} ^{2} + 1)(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )\xi + \mu _{r} ^{2} E_{r} (\mu _{r} - 1))(((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln (R) - ((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} ) \hfill \\ ((\mu _{r} ^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln (r) - \frac{1}{2}E_{r} ((\mu _{r} ^{3} + \frac{1}{2}\mu _{r} ^{2} - \frac{1}{2}\mu _{r} )\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} ))r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{^{{2E_{r} + \xi }} }}{{2\xi \mu _{r} ^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} ) \hfill \\ \end{gathered} \right)}},$$
$$C_{2} = \frac{{ - \left( \begin{aligned} & 4E_{r} \sigma _{0} ((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )(4r^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + \left( {\xi + E_{r} } \right)\mu _{r} - \xi - E_{r} }}}} (\mu _{r} - \frac{1}{2})((\mu _{r} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} ) \\ & \mu _{r}^{2} R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} + ((\mu _{r}^{2} + 1)(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )\xi + \mu _{r}^{2} E_{r} (\mu _{r} - 1))r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} ) \\ \end{aligned} \right)}}{{\left( \begin{aligned} & 8r^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} E_{r} ((\mu _{r}^{5} - \frac{3}{4}\mu _{r}^{3} + \frac{3}{4}\mu _{r}^{2} + \frac{1}{4}\mu _{r} - \frac{1}{4})\xi + (\mu _{r}^{3} - \frac{1}{2}\mu _{r}^{2} - \mu _{r} + 1)(\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2}) \\ & \xi + \frac{1}{2}(\mu _{r} - 1)E_{r} )R^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} + 8((\mu _{r}^{2} + 1)(\mu _{r} - \frac{1}{2})(1 + \mu _{r} )\xi + \mu _{r}^{2} E_{r} (\mu _{r} - 1))(((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + \\ & (\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln \left( R \right) - ((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi + (\mu _{r} - 1)E_{r} )((\mu _{r}^{2} + \frac{1}{2}\mu _{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} ) \\ & \ln \left( r \right) - \frac{1}{2}E_{r} ((\mu _{r}^{3} + \frac{1}{2}\mu _{r}^{2} - \frac{1}{2}\mu _{r} )\xi + \frac{1}{2}(\mu _{r} - 1)E_{r} ))r^{{\frac{{\mu _{r} (2\mu _{r} \xi + 2E_{r} + \xi )}}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} R^{{\frac{{2E_{r} + \xi }}{{2\xi \mu _{r}^{2} + (\xi + E_{r} )\mu _{r} - \xi - E_{r} }}}} \\ \end{aligned} \right)}},$$
$$C_{3} = \frac{{\left( \begin{aligned} 16\sigma_{0} ((\mu_{r}^{2} + \mu_{r} )\xi + (\mu_{r} - 1)E_{r} )((\mu_{r} - \frac{1}{2})((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} ))((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi \hfill \\ + \left( {\mu_{r} - 1} \right)E_{r} )\mu_{r}^{2} \ln R - (\mu_{r} - \frac{1}{2})((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi + \left( {\mu_{r} - 1} \right)E_{r} ) \hfill \\ \mu_{r}^{2} \ln r - \frac{1}{2}E_{r} ((\mu_{r} - \frac{1}{2})(1 + \mu_{r} ))(\mu_{r}^{4} - \frac{1}{4}\mu_{r}^{2} + \frac{1}{4})\xi + (\mu_{r}^{3} - \frac{1}{2}\mu_{r}^{2} - \frac{1}{2}\mu_{r} + \frac{1}{2})(\mu_{r} - 1) \hfill \\ \end{aligned} \right)}}{{\left( \begin{aligned} 8(((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi + \left( {\mu_{r} - 1} \right)E_{r} )((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi - \frac{1}{2}E_{r} )\ln R - ((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2})\xi + \left( {\mu_{r} - 1} \right)E_{r} )((\mu_{r}^{2} + \frac{1}{2}\mu_{r} - \frac{1}{2}) \hfill \\ \xi - \frac{1}{2}E_{r} ))((\mu_{r}^{2} + 1)(\mu_{r} - \frac{1}{2})(1 + \mu_{r} )\xi + \mu_{r}^{2} E_{r} (\mu_{r} - 1))R^{{\frac{{ - 2\xi \mu_{r}^{2} + \left( { - \xi - 2E_{r} } \right)\mu_{r} + \xi + 2E_{r} }}{{2\xi \mu_{r}^{2} + \left( {\xi + E_{r} } \right)\mu_{r} - \xi - E_{r} }}}} + r^{{\frac{{ - 2\xi \mu_{r}^{2} + \left( { - \xi - 2E_{r} } \right)\mu_{r} + \xi + 2E_{r} }}{{2\xi \mu_{r}^{2} + \left( {\xi + E_{r} } \right)\mu_{r} - \xi - E_{r} }}}} E_{r} (8(\mu_{r} - \frac{1}{2})^{2} (1 + \mu_{r} )^{2} \hfill \\ (\mu_{r}^{3} - \frac{1}{2}\mu_{r}^{2} + \frac{1}{2})\xi^{2} ) + 12(\mu_{r} - \frac{1}{2})(1 + \mu_{r} )^{2} (\mu_{r}^{2} - \frac{3}{2}\mu_{r} + \frac{5}{6})(\mu_{r} - 1)E_{r} \xi + 4\left( {\mu_{r} - 1} \right)^{2} E_{r}^{2} (\mu_{r}^{3} + \frac{1}{2}\mu_{r}^{2} - \mu_{r} + 1) \hfill \\ \end{aligned} \right)}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Han, W., Jiang, Y. et al. Coupling Analysis for Rock Mass Supported with CMC or CFC Rockbolts Based on Viscoelastic Method. Rock Mech Rock Eng 52, 4565–4588 (2019). https://doi.org/10.1007/s00603-019-01840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-019-01840-6

Keywords

Navigation