Skip to main content

Advertisement

Log in

Experimental Study of the Seepage Characteristics of Loaded Coal Under True Triaxial Conditions

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Gas-bearing, coal-bearing rocks are affected by geological structures and mechanical disturbances. A stress environment exists in an unequal three-way pressure state. To determine the mechanisms of stress change that influence the fissure evolution in stratified coal under true triaxial conditions, different stratifications (vertical, horizontal and oblique stratifications) are experimentally studied based on coal gas permeability. The coal samples are investigated using scanning electron microscopy and transmission electron microscopy to analyze the microstructure differences of the coal samples before and after loading. The results show that the permeability of the different stratified coal samples is exponentially related to the maximum principal stress, the intermediate principal stress, the minimum principal stress and the effective stress. The initial permeability of the vertically stratified coal samples is only 13.5%, which is 22.2% of that for skewed bedding. The bedding direction has a significant effect on the seepage characteristics of the coal samples. In the past, most scholars ignored the influence of bedding when conducting permeability tests. The results of this paper have important theoretical and practical value for optimizing the parameters of gas drainage, increasing the gas drainage rate and reducing the “greenhouse effect” caused by gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({\sigma _1}\) :

Maximum principal stress

\({\sigma _2}\) :

Intermediate principal stress

\({\sigma _3}\) :

Minimum principal stress

D m :

Permeability loss of coal samples

k 0 :

Permeability of the initial coal sample during loading

k m :

Permeability of the coal sample at the end of the loading

k b :

Minimum permeability value of the coal sample during the entire loading process

\(\varepsilon _{{\text{v}}}^{{\text{P}}}\) :

Volumetric strain increment

\({\varepsilon _{{\text{v}}i}}\;(i=1,2,3 \ldots ,n)\) :

Volumetric strain

\({\varepsilon _{\text{v}}}\) :

Volume strain

\({\varepsilon _1}\) :

Direction of the maximum principal stress

\({\varepsilon _2}\) :

Direction of the intermediate principal stress

\({\varepsilon _3}\) :

Direction of the minimum principal stress

\(\tau\) :

Shear stress

\({\sigma _{\text{m}}}\) :

Average normal stress

\({\tau _\psi }\) :

Shear stress on the \(\psi\) plane

\({\sigma _\psi }\) :

Normal stress on the \(\psi\) plane

References

  • Cristescu N et al (1994) A procedure to determine non-associated constitutive equations for geomaterials. Int J Plast 10(2):103–131

    Article  Google Scholar 

  • Deng GH, Shao SJ (2013) Research on change structural characteristics of loess based on true triaxial tests. Rock Soil Mech 03:679–684

    Google Scholar 

  • Du K, Li XB, Li DY, Weng L (2013) Failure properties of rocks in true triaxial unloading compressive test. Trans Nonferrous Metals Soc China 25:571–581

    Article  Google Scholar 

  • Faoro I, Niemaijer A, Marone C (2009) Influence of shear and deviatoric stress on the evolution of permeability in fractured rock. J Geophys Res Solid Earth 114:B1

    Article  Google Scholar 

  • Feng XT, Zhang XW, Kong R (2016) A novel mogi type true triaxial testing apparatus and its use to obtain complete stress-strain curves of hard rocks. Rock Mech Rock Eng 49:1649–1662

    Article  Google Scholar 

  • Gao YB, Liu DQ, Zhang XY (2017) Analysis and optimization of entry stability in underground longwall mining. Sustainability 9(11):2079

    Article  Google Scholar 

  • Gash BW, Volz RF, Potter G (1993) The effects of cleat orientation and confining pressure on cleat porosity, permeability and relative permeability in coal. Paper 93(21):17–21

    Google Scholar 

  • Gong WL, Feng XW, Hu AQ, Du S, Zhao ZH (2011) Experimental study on real triaxial physical simulation of coal seam gas seepage. Beijing Mech Assoc 08:330–338

    Google Scholar 

  • Huang BX, Li PF (2015) Experimental investigation on the basic law of the fracture spatial morphology for water pressure blasting in a drillhole under true triaxial stress. Rock Mech Rock Eng 48:1699–1709

    Article  Google Scholar 

  • Ingraham MD, Issen KA, Holcomb DJ (2013) Response of castlegate sandstone to true triaxial states of stress. J Geophys Res Solid Earth 118:536–552

    Article  Google Scholar 

  • Kaunda R (2014) New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength. J Rock Mech Geotech Eng 6:338–347

    Article  Google Scholar 

  • Karev VI, Klimov DM, Kovalenko YuF (2016) Fracture of sedimentary rocks under a complex triaxial stress state. Mech Solids 51(5):522–526

    Article  Google Scholar 

  • Klimov DM, Kovalenko YF (2016) Fracture of sedimentary rocks under a complex triaxial stress state. Mech Solids 51:522–526

    Article  Google Scholar 

  • Kwasniewski M (2013) Recent advances in studies of the strength of rocks under true triaxial compression conditions. Arch Min Sci 58:1177–1200

    Google Scholar 

  • Lei QH, Wang XG, Xiang JS (2017) Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer. Hydrogeol J 25:2251–2262

    Article  Google Scholar 

  • Li DQ, Zhang SC, Zhang SA (2014) Experimental and numerical simulation study on fracturing through interlayer to coal seam. J Nat Gas Sci Eng 21:386–389

    Article  Google Scholar 

  • Li MH, Yin GZ, Xu J (2016a) Permeability evolution of shale under anisotropic true triaxial stress conditions. Int J Coal Geol 08:142–148

    Article  Google Scholar 

  • Li WX, Wang G, Du WZ (2016b) Development and application of a true triaxial gas-solid coupling testing system for coal seepage. Rock Soil Mech 37:2109–2118

    Google Scholar 

  • Li MH, Yin GZ, Xu J (2016c) A novel true triaxial apparatus to study the geomechanical and fluid flow aspects of energy exploitations in geological formations. Rock Mech Rock Eng 49:4647–4659

    Article  Google Scholar 

  • Liu YB, Li MH, Yin GZ, Zhang DM, Deng BZ (2018) Permeability evolution of anthracite coal considering true triaxial stress conditions and structural anisotropy. J Nat Gas Sci Eng 52:492–506

    Article  Google Scholar 

  • Massarotto P, Rudolph V, Golding SD (2003) Anisotropic permeability characterisation of permian coals. In: International coalbed methane symposium. The University of Alabama, pp 1–11

  • Miao JL, Jia XN, Cheng C (2011) The failure characteristics of granite under true triaxial unloading condition. Procedia Eng 26:1620–1625

    Article  Google Scholar 

  • Mosleh MH, Turner M, Sedighi M, Vardon PJ (2018) Carbon dioxide flow and interactions in a high rank coal: permeability evolution and reversibility of reactive processes. Int J Greenhouse Gas Control 70:57–67

    Article  Google Scholar 

  • Nasseri MHB, Goodfellow SD, Lombos L (2014) 3-D transport and acoustic properties of fontainebleau sandstone during true-triaxial deformation experiments. Int J Rock Mech Min Sci 69:1–18

    Article  Google Scholar 

  • Nie MS, He XQ, Li XC, Zhang X (2009) Experimental study on gas seepage law of coal under true triaxial stress. Chin Soc Rock Mech Eng 26:354–356

    Google Scholar 

  • Niu Y, Mostaghimi P, Shikhov I, Chen Z, Armstrong RT (2018) Coal permeability: gas slippage linked to permeability rebound. Fuel 215:844–852

    Article  Google Scholar 

  • Samuelson J, Elsworth D, Marone C (2009) Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J Geophys Res Solid Earth 114:B12

    Article  Google Scholar 

  • Shi R, Liu J, Wei M, Elsworth D, Wang X (2018) Mechanistic analysis of coal permeability evolution data under stress-controlled conditions. Int J Rock Mech Min Sci 110:36–47

    Article  Google Scholar 

  • Takahashi M (2007) Permeability and deformation characteristics of shirahama sandstone under a general stress state. Arch Min Sci 52:355–369

    Google Scholar 

  • Takahashi M, Park H, Takahashi N (2013) True triaxial tests-using permeability and extensional stress parameters to simulate geological history in rocks. Geosyst Eng 16:75–82

    Article  Google Scholar 

  • Tan P, Jin Y, Han K (2017) Vertical propagation behavior of hydraulic fractures in coal measure strata based on truetriaxial experiment. J Petrol Sci Eng 158:398–407

    Article  Google Scholar 

  • Wang K, Zhang J (2013) Comparison between cleat aperture-dependent and porosity-dependent permeability models for triaxial stress conditions. Disaster Adv 6:185–192

    Google Scholar 

  • Wang DK, Wei JP, Yin GZ (2012) Investigation on change rule of permeability of coal containing gas under complex stress paths. Chin J Rock Mech Eng 2:303–310

    Google Scholar 

  • Wang DK, Wei JP, Fu QC (2015) Seepage law and permeability calculation of coal gas based on Klinkenberg effect. J Cent South Univ 22:1973–1978

    Article  Google Scholar 

  • Xie HQ, He CH (2010) Study of the unloading characteristics of a rock mass using the triaxial test and damage mechanic. Int J Rock Mech Min Sci 47(2):286–298

    Article  Google Scholar 

  • Xu ZW (2003) Study on the characteristic of soil anisotropic deformation by true triaxial test. HeHai University, Nanjing

    Google Scholar 

  • Xu J, Peng S, Yin GZ, Tao YQ, Yang HW, Wang WZ (2010) Development and application of triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane. Chin J Rock Mech Eng 05:2436–2445

    Google Scholar 

  • Yin GZ, Li MH, Xu J, Wang WZ, Li WP, Li X, Song ZL, Deng BZ (2015) A new multifunctional true triaxial fluid-solid coupling experiment system and its applications. Chin J Rock Mech Eng 12:2436–2445

    Google Scholar 

  • Zhang KY, Zhu JG, Wu XM (2010) True triaxial test on clay mixed with gravel under complex stress state. Rock Soil Mech 31:2799–2804

    Google Scholar 

  • Zhao XG, Cai M (2015) Influence of specimen height-to-width ratio on the strainburst characteristics of Tianhu granite under true-triaxial unloading conditions. Can Geotech J 52:890–902

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51604101, 51704099, 51734007, 51774119, and 51604092), the National Key Research and Development Program of China (2018YFC0808103), the Doctoral Fund of Henan Polytechnic University (no. B2018-59), the State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University) (WS2017B06), the Henan Postdoctoral Foundation, and the Open Research Fund Program of Hunan Province Key Laboratory of Safe Mining Techniques Of Coal Mines (Hunan University of Science and Technology) (201502), the Open Research Fund Program of Hunan Province Key Laboratory of Safe Mining Techniques Of Coal Mines (Hunan University of Science and Technology) (201502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Liu or Xuebo Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gao, J., Zhang, X. et al. Experimental Study of the Seepage Characteristics of Loaded Coal Under True Triaxial Conditions. Rock Mech Rock Eng 52, 2815–2833 (2019). https://doi.org/10.1007/s00603-018-1720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1720-x

Keywords

Navigation