Skip to main content
Log in

Width Evolution of the Hydraulic Fractures in Different Reservoir Rocks

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abousleiman YN, Hoang SK, Liu C (2014) Anisotropic porothermoelastic solution and hydro-thermal effects on fracture width in hydraulic fracturing. Int J Numer Anal Meth Geomech 38(5):493–517

    Article  Google Scholar 

  • Adachi JI, Siebrits E, Peirce AP, Desroches J (2007) Computer simulation of hydraulic fractures. Int J Rock Mech Min Sci 44(5):739–757

    Article  Google Scholar 

  • Alm O, Jaktlund LL, Shaoquan K (1985) The influence of microcrack density on the elastic and fracture mechanical properties of stripa granite. Phys Earth Planet Inter 40(3):161–179

    Article  Google Scholar 

  • Groenenboom J, Dam DBV, Pater CJD (2001) Time-lapse ultrasonic measurements of laboratory hydraulic-fracture growth: tip behavior and width profile. SPE J 6(1):14–24

    Article  Google Scholar 

  • He J, Lin C, Li X, Wan X (2016) Experimental investigation of crack extension patterns in hydraulic fracturing with shale, sandstone and granite cores. Energies 9(12):1018

    Article  Google Scholar 

  • He J, Lin C, Li X, Zhang YX, Chen Y (2017) Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores. Fuel 208:65–70

    Article  Google Scholar 

  • Kang Y, Xu C, You L, Tang L, Lian Z (2015) Comprehensive prediction of dynamic fracture width for formation damage control in fractured tight gas reservoir. Int J Oil Gas Coal Technol 9(3):296

    Article  Google Scholar 

  • Li X, Feng Z, Han G, Elsworth D, Marone C, Saffer D (2016) Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2. Geomech Geophy Geo-Energy and Geo-Res 2(2):63–76

    Article  Google Scholar 

  • Lin C, He J, Li X, Wan X, Zheng B (2017) An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mech Rock Eng 50(3):543–554

    Article  Google Scholar 

  • Mcclure MW (2012) Modeling and characterization of hydraulic stimulation and induced seismicity in geothermal and shale gas reservoirs Dissertation, University of Stanford

  • Mohammadnejad T, Andrade JE (2016) Numerical modeling of hydraulic fracture propagation, closure and reopening using xfem with application to in situ stress estimation. Int J Numer Anal Methods Geomech 40(15):2033–2060

    Article  Google Scholar 

  • Neto LB, Kotousov A (2012) Residual opening of hydraulically stimulated fractures filled with granular particles. J Petrol Sci Eng 100(100):24–29

    Article  Google Scholar 

  • Nicksiar M, Martin CD (2014) Factors affecting crack initiation in low porosity crystalline rocks. Rock Mech Rock Eng 47(4):1165–1181

    Article  Google Scholar 

  • Pradhan S, Stroisz AM, Fjær E, Stenebråten JF, Lund HK, Sønstebø EF (2015) Stress-induced fracturing of reservoir rocks: acoustic monitoring and μCT image analysis. Rock Mech Rock Eng 48:2529–2540

    Article  Google Scholar 

  • Ren L, Zhao J, Hu Y (2014) Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism. Sci World J 2014(2):847107

    Google Scholar 

  • Renard F, Bernard D, Desrues J, Ougier-Simonin A (2009) 3D imaging of fracture propagation using synchrotron X-ray microtomography. Earth Planet Sci Lett 286:285–291

    Article  Google Scholar 

  • Rong G, Liu G, Hou D, Zhou CB (2013) Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model. Sci World J 2013(7):589215

    Google Scholar 

  • Scholz CH (1968) Experimental study of the fracturing process in britle rocks. J Geophys Res 88:555–568

    Google Scholar 

  • Tran D, Settari AT, Long XN (2012) Predicting growth and decay of hydraulic fracture width in porous media subjected to isothermal and nonisothermal flow. SPE J 18(4):781–794

    Article  Google Scholar 

  • Wanniarachchi WAM, Gamage RP, Perera MSA, Rathnaweera TD, Gao M, Padmanabhan E (2017) Investigation of depth and injection pressure effects on breakdown pressure and fracture permeability of shale reservoirs: an experimental study. Appl Sci 7(7):664

    Article  Google Scholar 

  • Zhang B, Li X, Zhang Z, Wu Y, Wang Y (2016) Numerical investigation of influence of in situ stress ratio, injection rate and fluid viscosity on hydraulic fracture propagation using a distinct element approach. Energies 9(3):140

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their helpful and constructive comments. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41572310, 41227901) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB10030301, XDB10030304). The authors also would like to particularly thank Dr. Songbo Yu (Tongji University, China) and Dr. Guanghui Tian (Tongji University, China) for their consistent support, patience and guidance throughout the experiment procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., He, J. & Li, X. Width Evolution of the Hydraulic Fractures in Different Reservoir Rocks. Rock Mech Rock Eng 51, 1621–1627 (2018). https://doi.org/10.1007/s00603-017-1391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1391-z

Keywords

Navigation