Skip to main content
Log in

Stress Thresholds of Crack Development and Poisson’s Ratio of Rock Material at High Strain Rate

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barla G, Zhao J (2010) Special issue: rock dynamics and earthquake engineering. Rock Mech Rock Eng 43:655–655. https://doi.org/10.1007/s00603-010-0120-7

    Article  Google Scholar 

  • Bauer SJ, Conley CH (1987) A proposed method for predicting rock-mass deformability using a compliant joint model. In: The 28th US symposium on rock mechanics (USRMS). American Rock Mechanics Association

  • Bhasin R, Høeg K (1998) Numerical modelling of block size effects and influence of joint properties in multiply jointed rock. Tunn Undergr Space Technol 13:181–188

    Article  Google Scholar 

  • Bieniawski ZT (1967) Stability concept of brittle fracture propagation in rock. Eng Geol 2(3):149–162

    Article  Google Scholar 

  • Bieniawski Z, Bernede M (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1 Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 2:138–140

    Article  Google Scholar 

  • Cui HR, Tang GJ, Shen ZB (2016) Study on the viscoelastic poisson‘s ratio of solid propellants using digital image correlation method. Propellants Explos Pyrotech. https://doi.org/10.1002/prep.201500313

    Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read R (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35:222–233

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011

    Article  Google Scholar 

  • Hardy HR (1976) In: Vutukuri VS, Lama RD, Saluja SS (eds) Handbook on mechanical properties of rocks, vol 1. Trans Tech Publications, Clausthal

    Google Scholar 

  • Hoek E, Martin C (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6:287–300. https://doi.org/10.1016/j.jrmge.2014.06.001

    Article  Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci Geomech Abstr 2:125–134

    Article  Google Scholar 

  • Liang CY, Li X, Wang S, Li S, He J, Ma C (2012) Experimental investigations on rate-dependent stress–strain characteristics and energy mechanism of rock under uniaixal compression. Chin J Rock Mechan Eng 31:1830–1838

    Google Scholar 

  • Luo P, Chao Y, Sutton M, Peters Iii W (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132. https://doi.org/10.1007/BF02322488

    Article  Google Scholar 

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around underground openings. University of Manitoba, Winnipeg

    Google Scholar 

  • Min K-B, Jing L (2003) Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int J Rock Mech Min Sci 40:795–816. https://doi.org/10.1016/S1365-1609(03)00038-8

    Article  Google Scholar 

  • Moradian Z, Einstein HH, Ballivy G (2016) Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals. Rock Mech Rock Eng 49:785–800. https://doi.org/10.1007/s00603-015-0775-1

    Article  Google Scholar 

  • Munoz H, Taheri A, Chanda E (2016) Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation. Rock Mech Rock Eng 49:2541–2554. https://doi.org/10.1007/s00603-016-0935-y

    Article  Google Scholar 

  • Nicksiar M, Martin C (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76. https://doi.org/10.1016/j.enggeo.2012.12.007

    Article  Google Scholar 

  • Pan B, Yu L, Yuan J, Shen Z, Tang G (2015) Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique. Propellants Explos Pyrotech 40:821–830. https://doi.org/10.1002/prep.201500042

    Article  Google Scholar 

  • Pritchard RH, Lava P, Debruyne D, Terentjev EM (2013) Precise determination of the Poisson ratio in soft materials with 2D digital image correlation. Soft Matter 9:6037–6045. https://doi.org/10.1039/C3SM50901J

    Article  Google Scholar 

  • Sutton MA, Yan J, Tiwari V, Schreier H, Orteu J (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46:746–757. https://doi.org/10.1016/j.optlaseng.2008.05.005

    Article  Google Scholar 

  • Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  • Swamy RN (1971) Dynamic Poisson’s ratio of portland cement paste, mortar and concrete. Cem Concr Res 1:559–583

    Article  Google Scholar 

  • Tu ZR, Yang Q (2008) Test research on negative Poisson’s ratio of rock mass. Rock Soil Mech 10:047

    Google Scholar 

  • Xing HZ, Zhang QB, Braithwaite C, Pan B, Zhao J (2017) High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech Rock Eng 50:1611–1659. https://doi.org/10.1007/s00603-016-1164-0

    Article  Google Scholar 

  • Xing HZ, Zhang QB, Ruan D, Dehkhoda S, Lu G, Zhao J (2018) Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation. Int J Impact Eng 113:61–72. https://doi.org/10.1016/j.ijimpeng.2017.11.011

    Article  Google Scholar 

  • Xu Z, Yin Z (2000) Study on deformation characteristic of silt by true triaxial test. Chin J Rock Mechan Eng 5:020

    Google Scholar 

  • Xue L, Qin S, Sun Q, Wang Y, Lee LM, Li W (2014) A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech Rock Eng 47:1183–1195. https://doi.org/10.1007/s00603-013-0479-3

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439. https://doi.org/10.1016/j.ijrmms.2013.01.005

    Google Scholar 

  • Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478. https://doi.org/10.1007/s00603-013-0463-y

    Article  Google Scholar 

  • Zhao XG, Cai M, Wang J, Li P, Ma L (2015) Objective determination of crack initiation stress of brittle rocks under compression using AE measurement. Rock Mech Rock Eng 48:2473–2484

    Article  Google Scholar 

  • Zhou YX, Zhao J (2011) Advances in rock dynamics and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zhou YX, Xia KW, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112. https://doi.org/10.1016/j.ijrmms.2011.10.004

  • Zhu J, Xu B, Cen Z (2001) Study on the deformation mechanisms of sliding dilation of post-failure rocks. Mech Eng 23:19–22

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (LE150100058) and National Nature Science Foundation of China (No. 41525009). The first author would like to acknowledge the financial support by the China Scholarship Council (201503170221) and CSIRO top-up scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. B. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H.Z., Zhang, Q.B. & Zhao, J. Stress Thresholds of Crack Development and Poisson’s Ratio of Rock Material at High Strain Rate. Rock Mech Rock Eng 51, 945–951 (2018). https://doi.org/10.1007/s00603-017-1377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1377-x

Keywords

Navigation