Skip to main content
Log in

Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abell BC (2015) Elastic Waves along a Fracture Intersection, Ph.D. thesis, Purdue University, West Lafayette, p 295

  • Abell BC, Pyrak-Nolte LJ (2013) Coupled wedge waves. J Acoust Soc Am 134(5):3551

    Article  Google Scholar 

  • Abell BC, Shao S, Pyrak-Nolte LJ (2014) Measurements of elastic constants in anisotropic media. Geophysics 79(5):D349–D362

    Article  Google Scholar 

  • Amadei B (1996) Importance of anisotropy when estimating and measuring in situ stresses in rock. Inter J Rock Mech Min Sci Geomech Abstr 33(3):293–325

    Article  Google Scholar 

  • Amadei B, Goodman RE (1982) The influence of rock anisotropy on stress measurements by overcoring techniques. Rock Mech 15:167–180

    Article  Google Scholar 

  • Angel YC, Achenbach JD (1985) Reflection and transmission of elastic waves by a periodic array of cracks. J Appl Mech 52:33–41

    Article  Google Scholar 

  • Bai TX, Maerten L, Gross MR, Aydin A (2002) Orthogonal cross joints: do they imply a regional stress rotation? J Struct Geol 24(1):77–88

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data—P II: fractured models with orthorhombic symmetry. Geophysic 65(6):1803–1817

    Article  Google Scholar 

  • Braun MG, Kelemen PB (2002) Dunite distribution in the Oman ophiolite: Implications for melt flux through porous dunite conduits. Geochem Geophys Geosyst 3:1–21

  • Carcione JM, Picotti S (2012) Reflection and transmission coefficients of a fracture in transversely isotropic media. Stud Geophys Geod 56:307–322

    Article  Google Scholar 

  • Choi M-K, Bobet A, Pyrak-Nolte LJ (2014) The effect of surface roughness and mixed-mode loading on the stiffness ratio, Kx/Kz for fractures. Geophysics 79(5):D319–D331

    Article  Google Scholar 

  • Cook NGW (1992) Natural joints in rock: mechanical, hydraulic, and seismic behavior and properties under normal stress. Int J Rock Mech Min Sci 29:198–223

    Article  Google Scholar 

  • De Basabe JD, Sen MK, Wheeler MF (2010) Seismic wave propagation in fractured media. SEG technical program expanded abstracts 2011, SEG san antonio 2011 meeting, pp 2920–2924

  • Far ME, de Figueiredo JJS, Stewart RR, Castagna JP, Han D-H, Dyaur N (2014) Measurements of seismic anisotropy and fracture compliances in synthetic fractured media. Geophys J Int 197:1845–1857

    Article  Google Scholar 

  • Fuck RF, Tsvankin I (2006) Seismic signatures of two orthogonal sets of vertical microcorrugated fractures. J Seism Explor 15:183–208

    Google Scholar 

  • Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div Am Soc Civ Eng 94(SM3):637–659

    Google Scholar 

  • Grechka V, Kachanov M (2006) Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71(6):W45–W58

    Article  Google Scholar 

  • Greenwood JA, Williamson JB (1966) Contact of nominally flat surfaces. In: Proceedings of the royal society of london series a—mathematical physical and engineering sciences, p 295

  • Gross MR (1993) The origin and spacing of cross joints—examples from the Monterey formation, Santa Barbara Coastline, California. J Struct Geol 15(6):737–751

    Article  Google Scholar 

  • Gu BL (1994) Interface waves on a fracture in rock, Ph.D. thesis, University of California, Berkeley, Berkeley

  • Gu BL, Suarez-Rivera R, Nihei KT, Myer LR (1996) Incidence of plane waves upon a fracture. J Geophys Res 101(B11):25337–25346

    Article  Google Scholar 

  • Hauser MR, Weaver RL, Wolfe JP (1995) Internal diffraction of ultrasound in crystals: phonon focusing at long wavelengths. Phys Rev Lett 68(17):2604–2607

    Article  Google Scholar 

  • Hobday C, Worthington MH (2012) Field measurements of normal and shear fracture compliance. Geophys Prospect 60(3):488–499

    Article  Google Scholar 

  • Hodgson RA (1961) Regional study of jointing in Comb Ridge-Navajo Mountain area, Arizona and Utah. AAPG Bull 45(1):1–37

    Google Scholar 

  • Hood JA, Schoenberg M (1989) Estimation of vertical fracturing from measured elastic moduli. J Geophys Res 94:15,611–615,618

  • Hopkins DL (1990) The effect of surface roughness on joint stiffness, aperture and acoustic wave propagation, Ph.D. thesis, University of California, Berkeley, Berkeley

  • Hopkins DL, Cook NGW, Myer LR (1990) Normal joint stiffness as a function of spatial geometry and surface roughness. In: Paper presented at international symposium on rock joints, Loen, Norway

  • Kendall K, Tabor D (1971) An ultrasonic study of the area of contact between stationary and sliding surfaces. Proc R Soc Lond Ser A 323:321–340

    Article  Google Scholar 

  • Lubbe R, Worthington MH (2006) A field investigation of fracture compliance. Geophys Prospect 54(3):319–331

    Article  Google Scholar 

  • Lubbe R, Sothcott J, Worthington MH, McCann C (2008) Laboratory estimates of normal and shear fracture compliance. Geophys Prospect 56(2):239–247

    Article  Google Scholar 

  • Mandl G (2005) Rock joints: the mechanical genesis. Springer, Berlin

    Google Scholar 

  • Murty GS, Kumar V (1991) Elastic wave propagation with kinematic discontinuity along anon-ideal interface between two isotropic elastic half-spaces. J Nondestr Eval 10(2):39–53

    Article  Google Scholar 

  • Myer LR (2000) Fractures as collections of cracks. Int J Rock Mech Min Sci 37:231–243

    Article  Google Scholar 

  • Nagy PB, Bonner BP, Adler L (1995) Slow wave imaging of permeable rock. Geophys Res Lett 22(9):1053–1056

    Article  Google Scholar 

  • Nakagawa S (1998) Acoustic resonance characteristics of rock and concrete containing fractures, Ph.D. thesis, University of California, Berkeley

  • Nakagawa S, Nihei KT, Myer LR (2000a) Shear-induced conversion of seismic waves across single fractures. Int J Rock Mech Min Sci 37(1–2):203–218

    Article  Google Scholar 

  • Nakagawa S, Nihei KT, Myer LR (2000b) Stop-pass behavior of acoustic waves in a 1D fractured system. J Acoust Soc Am 107(1):40–50

    Article  Google Scholar 

  • Nakagawa S, Nihei KT, Myer LR (2002) Elastic wave propagation along a set of parallel fractures. Geophys Res Lett 29(16):31.1–31.4

  • Nihei KT, Myer LR, Cook NGW, Yi WD (1994) Effects of nonwelded interfaces on guided SH-waves. Geophys Res Lett 21(9):745–748

    Article  Google Scholar 

  • Nihei KT, Yi WD, Myer LR, Cook NGW, Schoenberg M (1999) Fracture channel waves. J Geophys Res Solid Earth 104(B3):4769–4781

    Article  Google Scholar 

  • Nolte DD, Pyrak-Nolte LJ, Beachy J, Ziegler C (2000) Transition from the displacement discontinuity limit to the resonant scattering regime for fracture interface waves. Int J Rock Mech Min Sci 37(1–2):219–230

    Article  Google Scholar 

  • Oliger A, Nolte DD, Pyrak-Nolte LJ (2003) Seismic focusing by a single planar fracture. Geophys Res Lett 30(5):1203

    Article  Google Scholar 

  • Petrovitch CL (2013) Universal scaling of the flow-stiffness relationship in weakly correlated single fractures. Ph.D. Purdue University, West Lafayette, IN

  • Petrovitch CL, Nolte DD, Pyrak-Nolte LJ (2013) Scaling of fluid flow versus fracture stiffness. Geophys Res Lett 40:2076–2080

    Article  Google Scholar 

  • Petrovitch CL, Pyrak-Nolte LJ, Nolte DD (2014) Combined scaling of fluid flow and seismic stiffness in single fractures. Rock Mech Rock Eng 47:1613. doi:10.1007/s00603-014-0591-z

  • Pyrak-Nolte LJ (1996) The seismic response of fractures and the interrelations among fracture properties. Int J Rock Mech Min Sci 33(8):787

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Cook NGW (1987) Elastic interface waves along a fracture. Geophys Res Lett 14(11):1107–1110

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Nolte DD (2016) Approaching a universal scaling relationship between fracture stiffness and fluid flow. Nat Commun 7:10663. doi:10.1038/ncomms10663

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock. In: Paper presented at sixth international congress on rock mechanics, A. A. Balkema, Montreal, Canada

  • Pyrak-Nolte LJ, Myer LR, Cook NGW (1990a) Anisotropy in seismic velocities and amplitudes from multiple parallel fractures. J Geophys Res Solid Earth Planets 95(B7):11345–11358

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NGW (1990b) Transmission of seismic-waves across single natural fractures. J Geophys Res Solid Earth Planets 95(B6):8617–8638

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Xu JP, Haley GM (1992) Elastic interface waves propagating in a fracture. Phys Rev Lett 68(24):3650–3653

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Roy S, Mullenbach BL (1996) Interface waves propagated along a fracture. J Appl Geophys 35(2–3):79–87

    Article  Google Scholar 

  • Schoenberg M (1980) Elastic wave behavior across linear slip interfaces. J Acoust Soc Am 5(68):1516–1521

    Article  Google Scholar 

  • Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. J Geophys Prospect 36:571–590

    Article  Google Scholar 

  • Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1974

    Article  Google Scholar 

  • Shao S (2015) Fractures in anisotropic media, Ph.D. thesis, Purdue University, West Lafayette, p 228

  • Shao S, Pyrak-Nolte LJ (2013) Interface waves along fractures in anisotropic media. Geophysics 78(4):T99–T112

    Article  Google Scholar 

  • Shao S, Petrovitch CL, Pyrak-Nolte LJ (2015) Wave guiding in fractured layered media. In: Agar SM, Geiger S (eds) SP406 fundamental controls on fluid flow in carbonates: current workflows to emerging technologies, Geological Society of London, SP406 (in press)

  • Stearns DW (1972) Reservoirs in fractured rock. AAPG Spec Vol A010:82–106

    Google Scholar 

  • Xian CJ, Nolte DD, Pyrak-Nolte LJ (2001) Compressional waves guided between parallel fractures. Int J Rock Mech Min Sci 38(6):765–776

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the Geo-mathematical Imaging Group at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Pyrak-Nolte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Pyrak-Nolte, L.J. Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets. Rock Mech Rock Eng 49, 4033–4048 (2016). https://doi.org/10.1007/s00603-016-1084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1084-z

Keywords

Navigation