Skip to main content
Log in

The Applicability of Correspondence Rule with Inclined Load

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

c :

Cohesion

\(i_c, i_q\) :

Force inclination factors

\(p_{\rm{f}}\) :

Interstitial fluid pressure

\(s, s_a, s_p\) :

Stress parameters

\(N_c, N_q\) :

Bearing capacity coefficients

T :

Total stress

\(\alpha\) :

Inclination angle of effective stress

\(\delta\) :

Inclination angle of total stress

\(\varphi\) :

Internal friction angle

\(\sigma _1\) :

Major principal stress

\(\sigma _3\) :

Confining pressure

\(\sigma _c\) :

Uniaxial compressive strength

\(\sigma _d\) :

Differential stress

\(\sigma_n, \sigma_n{^\prime}\) :

Contact stress and effective contact stress

\(\sigma _{n1}{^\prime}, \sigma _{n2}{^\prime}\) :

Trial effective contact stresses

\(\sigma , \sigma _x, \sigma _z\) :

Normal stresses

\(\tau\) :

Shear stress

\(\varPi\) :

Dimensionless contact stress under ambient pressure

\(\varSigma\) :

Dimensionless effective contact stress under confining pressure

\(\varPsi _a, \varPsi _p\) :

Inclination angles of major principal stresses

\(\Delta \varPsi\) :

Fan angle

References

  • Caquot AI (1934) Équilibre des massifs à frottement interne: stabilité des terres, pulvérulentes ou cohérentes. Gauthier-Villars, Paris

    Google Scholar 

  • Detournay E, Atkinson C (2000) Influence of pore pressure on the drilling response in low-permeability shear-dilatant rocks. Int J Rock Mech Min Sci 37(7):1091–1101

    Article  Google Scholar 

  • Detournay E, Defourny P (1992) A phenomenological model for the drilling action of drag bits. Int J Rock Mech Min Sci 29(1):13–23

    Article  Google Scholar 

  • Detournay E, Richard T, Shepherd M (2008) Drilling response of drag bits: theory and experiment. Int J Rock Mech Min Sci 45(8):1347–1360

    Article  Google Scholar 

  • Drescher A, Detournay E (1993) Limit load in translational failure mechanisms for associative and non-associative materials. Geotechnique 43(3):443–456

    Article  Google Scholar 

  • Engelder T (2014) Stress regimes in the lithosphere. Princeton University Press, Princeton

    Google Scholar 

  • Hjiaj M, Lyamin AV, Sloan SW (2004) Bearing capacity of a cohesive–frictional soil under non-eccentric inclined loading. Comput Geotech 31(6):491–516

    Article  Google Scholar 

  • Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Methods Geomech 37(13):1913–1929

    Article  Google Scholar 

  • Kaitkay P, Lei S (2005) Experimental study of rock cutting under external hydrostatic pressure. J Mater Process Technol 159(2):206–213

    Article  Google Scholar 

  • Ledgerwood R (2007) PFC modeling of rock cutting under high pressure conditions. In: Rock mechanics: meeting society’s challenges and demands, Proceedings of the 1st Canada-US rock mechanics symposium, Vancouver, Canada, pp 511–518

  • Liu H, Kou S, Lindqvist PA (2002) Numerical simulation of the fracture process in cutting heterogeneous brittle material. Int J Numer Anal Methods Geomech 26(13):1253–1278

    Article  Google Scholar 

  • Marck J, Detournay E, Kuesters J, Wingate A (2014) Analysis of spiraled borehole data using a novel directional drilling model. In: IADC/SPE drilling conference, SPE-167992-MS, Houston, TX, USA

  • Merchant ME (1944) Basic mechanics of the metal cutting process. J Appl Mech 11(A):168–175

    Google Scholar 

  • Michalowski RL (2001) The rule of equivalent states in limit-state analysis of soils. J Geotech Geoenviron Eng 127(1):76–83

    Article  Google Scholar 

  • Prandtl L (1921) Hauptaufsätze: Über die eindringungsfestigkeit (härte) plastischer baustoffe und die festigkeit von schneiden. ZAMM Z Angew Math Mech 1(1):15–20

    Article  Google Scholar 

  • Reissner H (1924) Zum erddruckproblem. In: Proceedings of the 1st international congress for applied mechanics, Delft, pp 295–311

  • Richard T, Dagrain F, Poyol E, Detournay E (2012) Rock strength determination from scratch tests. Eng Geol 147, 148:91–100

    Article  Google Scholar 

  • Richard T, Germay C, Detournay E (2007) A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits. J Sound Vib 305(3):432–456

    Article  Google Scholar 

  • Silvestri V (2006) Limitations of the theorem of corresponding states in active pressure problems. Can Geotech J 43(7):704–713

    Article  Google Scholar 

  • Sokolovskii VV (1965) Statistics of granular media. Pergamon Press, Oxford

    Google Scholar 

  • Zhou Y, Lin JS (2014) Modeling the ductile-brittle failure mode transition in rock cutting. Eng Frac Mech 127:135–147

    Article  Google Scholar 

  • Zhou Y, Detournay E (2014) Analysis of the contact forces on a blunt PDC bit. In: 48th US rock mechanics/geomechanics symposium, Minneapolis, MN, USA

  • Zhou Y, Detournay E (2016) Elastoplastic model of a blunt rigid tool sliding on rock, Manuscript in preparation

Download references

Acknowledgments

The author would like to thank Professor Emmanuel Detournay at the University of Minnesota and Professor Jeen-Shang Lin at the University of Pittsburgh for stimulating discussions. The author is indebted to Professor Jeen-Shang Lin for his careful review of an early version of this manuscript and to Professor Herbert Einstein and Professor Emmanuel Detournay for the constructive and extensive review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaneng Zhou.

Appendix: Iteration Procedure for Slip-Line Analysis

Appendix: Iteration Procedure for Slip-Line Analysis

In this appendix, the iteration procedure is given to obtain the dimensionless effective contact stress of a strip footing with an inclined load through slip-line analysis. The cohesive–frictional rock is characterized by cohesion c and internal friction angle \(\varphi\). The interstitial fluid pressure \(p_{\rm{f}}\) at the footing–rock interface is equal to the confining pressure \(\sigma _3\), and the inclination angle \(\alpha\) of the effective stress is given.

The iteration procedure is as follows:

  1. 1.

    Initialize the inclination angle \(\delta\) of the total stress at the interface. As the value of \(\delta\) is between 0 and the value of \(\alpha\), let \(\delta =\alpha /2\).

  2. 2.

    Calculate the trial effective contact stress \(\sigma _{n1}{^\prime}\) based on the geometrical relationship in Fig. 3:

    $$\sigma _{n1}{^\prime}=\frac{\tan \delta }{\tan \alpha -\tan \delta }\sigma _3$$
    (22)
  3. 3.

    Calculate the trial effective contact stress \(\sigma _{n2}{^\prime}\) based on slip-line analysis following these steps: (1) solve the fan angle \(\Delta \varPsi\) from Eq. (7); (2) calculate the inclination angle \(\varPsi _a\) of the major principal stress in the active zone , the coefficient \(N_c\) and the force inclination factor \(i_c\); and (3) calculate the trial effective contact stress \(\sigma _{n2}{^\prime}\) from Eq. (12).

  4. 4.

    Calculate the effective contact stress as the average of the two trial effective contact stresses:

    $$\sigma _n{^\prime}=\frac{1}{2}(\sigma _{n1}{^\prime}+\sigma _{n2}{^\prime})$$
    (23)
  5. 5.

    Compare the two trial effective contact stresses. If \(|\sigma _{n1}{^\prime}-\sigma _{n2}{^\prime}|/\sigma _n{^\prime}>10^{-6}\), update the inclination angle \(\delta\) of the total stress from Eq. (2), and then repeat steps 2, 3, and 4. Otherwise, go to the next step.

  6. 6.

    Calculate the dimensionless effective contact stress \(\varSigma\) from Eq. (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y. The Applicability of Correspondence Rule with Inclined Load. Rock Mech Rock Eng 50, 233–240 (2017). https://doi.org/10.1007/s00603-016-1051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1051-8

Keywords

Navigation