Skip to main content
Log in

Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmad IR, Shu DW (2011) Effect of specimen diameter in compression at high strain rates. J Eng Mech ASCE 137:169–174. doi:10.1061/(asce)em.1943-7889.0000216

    Article  Google Scholar 

  • Alber M, Hauptfleisch U (1999) Generation and visualization of microfractures in Carrara marble for estimating fracture toughness, fracture shear and fracture normal stiffness. Int J Rock Mech Min 36:1065–1071. doi:10.1016/s1365-1609(99)00069-6

    Article  Google Scholar 

  • Atkinson BK (1979) Fracture toughness of Tennessee Sandstone and Carrara Marble using the double torsion testing method. Int J Rock Mech Min Sci Geomech Abstr 16:49–53. doi:10.1016/0148-9062(79)90774-5

    Article  Google Scholar 

  • Banthia N, Mindess S, Bentur A, Pigeon M (1989) Impact testing of concrete using a drop-weight impact machine. Exp Mech 29:63–69

    Article  Google Scholar 

  • Bearman R, Briggs C, Kojovic T (1997) The applications of rock mechanics parameters to the prediction of comminution behaviour. Miner Eng 10:255–264

    Article  Google Scholar 

  • Bobet A (1997) Fracture coalescence in rock materials: experimental observations and numerical predictions. Dissertation, Massachusetts Institute of Technology

  • Bobet A (2000) The initiation of secondary cracks in compression. Eng Fract Mech 66:187–219. doi:10.1016/s0013-7944(00)00009-6

    Article  Google Scholar 

  • Bobet A, Einstein HH (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min 35:863–888. doi:10.1016/s0148-9062(98)00005-9

    Article  Google Scholar 

  • Cardani G, Meda A (1999) Flexural strength and notch sensitivity in natural building stones: Carrara and Dionysos marble. Constr Build Mater 13:393–403. doi:10.1016/s0950-0618(99)00035-5

    Article  Google Scholar 

  • Chen W, Song B, Chen WW (2011a) Kolsky compression bar experiments on brittle materials. In: Split Hopkinson (Kolsky) bar. Mechanical Engineering Series. Springer US, pp 77–118. doi:10.1007/978-1-4419-7982-7_3

  • Chen W, Song B, Chen WW (2011b) Testing conditions in Kolsky bar experiments. In: Split Hopkinson (Kolsky) bar. Mechanical Engineering Series. Springer US, pp 37–75. doi:10.1007/978-1-4419-7982-7_2

  • Cusatis G (2011) Strain-rate effects on concrete behavior. Int J Impact Eng 38:162–170. doi:10.1016/j.ijimpeng.2010.10.030

    Article  Google Scholar 

  • Dai F, Xia K, Zheng H, Wang YX (2011) Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 78:2633–2644. doi:10.1016/j.engfracmech.2011.06.022

    Article  Google Scholar 

  • Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179. doi:10.1016/0022-5096(63)90050-4

    Article  Google Scholar 

  • Fengchun J, Aashish R, Kenneth SV, Raghavendra RA (2004) Crack length calculation for bend specimens under static and dynamic loading. Eng Fract Mech 71:1971–1985. doi:10.1016/j.engfracmech.2003.10.004

    Article  Google Scholar 

  • Forquin P, Gary G, Gatuingt F (2008) A testing technique for concrete under confinement at high rates of strain. Int J Impact Eng 35:425–446

    Article  Google Scholar 

  • Frew D, Forrestal M, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41:40–46. doi:10.1007/bf02323102

    Article  Google Scholar 

  • Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57:223–250. doi:10.1115/1.1704626

    Article  Google Scholar 

  • Goldsmith W, Sackman J, Ewerts C (1976) Static and dynamic fracture strength of Barre granite. Int J Rock Mech Min Sci Geomech Abstr 13:303–309

    Article  Google Scholar 

  • Grady DE, Kipp ME (1979) The micromechanics of impact fracture of rock. Int J Rock Mech Min Sci Geomech Abstr 16:293–302. doi:10.1016/0148-9062(79)90240-7

    Article  Google Scholar 

  • Grady DE, Kipp ME (1980) Continuum modelling of explosive fracture in oil shale. Int J Rock Mech Min Sci Geomech Abstr 17:147–157. doi:10.1016/0148-9062(80)91361-3

    Article  Google Scholar 

  • Gray III GT (2000) Classic split-Hopkinson pressure bar testing vol 8. ASM Handbook, Mechanical Testing and Evaluation (ASM International)

  • Grote DL, Park SW, Zhou M (2001) Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. Int J Impact Eng 25:869–886. doi:10.1016/s0734-743x(01)00020-3

    Article  Google Scholar 

  • Gunasekera JS, Havranek J, Littlejohn MH (1982) The effect of specimen size on stress–strain behavior in compression. J Eng Mater Technol 104:274–279. doi:10.1115/1.3225076

    Article  Google Scholar 

  • Haimson B (2006) True triaxial stresses and the brittle fracture of rock. In: Dresen G, Zang A, Stephansson O (eds) Rock damage and fluid transport, part I. Pageoph Topical Volumes. Birkhäuser, Basel, pp 1101–1130. doi:10.1007/3-7643-7712-7_12

  • Hashiba K, Okubo S, Fukui K (2006) A new testing method for investigating the loading rate dependency of peak and residual rock strength. Int J Rock Mech Min 43:894–904. doi:10.1016/j.ijrmms.2005.12.005

    Article  Google Scholar 

  • Hild F, Denoual C, Forquin P, Brajer X (2003) On the probabilistic–deterministic transition involved in a fragmentation process of brittle materials. Comput Struct 81:1241–1253. doi:10.1016/S0045-7949(03)00039-7

    Article  Google Scholar 

  • Hoek E, Brown ET (1981) Underground excavations in rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  • Hogan JD, Rogers RJ, Spray JG, Boonsue S (2012) Dynamic fragmentation of granite for impact energies of 6–28. J. Eng Fract Mech 79:103–125. doi:10.1016/j.engfracmech.2011.10.006

    Article  Google Scholar 

  • Hong L, Li X, Ma C (2008) Study on size effect of rock dynamic strength and strain rate sensitivity. Chin J Rock Mech Eng 27:526–533

    Google Scholar 

  • Huang J, Chen G, Zhao Y, Wang R (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175:269–284. doi:10.1016/0040-1951(90)90142-u

    Article  Google Scholar 

  • Kaiser MA (1998) Advancements in the split Hopkinson bar test. Dissertation, Virginia Polytechnic Institute and State University

  • Kaiser MA, Wilson LT, Wicks AL, Swantek SD (2000) Experimental techniques for the Hopkinson bar. AIP Conf Proc 505:1103–1108. doi:10.1063/1.1303658

    Article  Google Scholar 

  • Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62:676

    Article  Google Scholar 

  • Kubota S, Ogata Y, Wada Y, Simangunsong G, Shimada H, Matsui K (2008) Estimation of dynamic tensile strength of sandstone. Int J Rock Mech Min 45:397–406. doi:10.1016/j.ijrmms.2007.07.003

    Article  Google Scholar 

  • Li Y, Xia C (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min 37:467–475

    Article  Google Scholar 

  • Li XB, Lok TS, Zhao J (2005) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38:21–39. doi:10.1007/s00603-004-0030-7

    Article  Google Scholar 

  • Li J, Ma G, Huang X (2010) Analysis of wave propagation through a filled rock joint. Rock Mech Rock Eng 43:789–798. doi:10.1007/s00603-009-0033-5

    Article  Google Scholar 

  • Lifshitz JM, Leber H (1994) Data processing in the split Hopkinson pressure bar tests. Int J Impact Eng 15:723–733. doi:10.1016/0734-743x(94)90011-9

    Article  Google Scholar 

  • Lindholm US (1964) Some experiments with the split Hopkinson pressure bar. J Mech Phys Solids 12:317–335. doi:10.1016/0022-5096(64)90028-6

    Article  Google Scholar 

  • Lindholm US, Yeakley LM (1968) High strain-rate testing: tension and compression. Exp Mech 8:1–9. doi:10.1007/BF02326244

    Article  Google Scholar 

  • Lindholm U, Yeakley L, Nagy A (1974) The dynamic strength and fracture properties of dresser basalt. Int J Rock Mech Min Sci Geomech Abstr 11:181–191

    Article  Google Scholar 

  • Lok TS, Li XB, Liu D, Zhao PJ (2002) Testing and response of large diameter brittle materials subjected to high strain rate. J Mater Civil Eng 14:262–269. doi:10.1061/(asce)0899-1561(2002)14:3(262)

    Article  Google Scholar 

  • Lu Y, Xu K (2004) Modelling of dynamic behaviour of concrete materials under blast loading. Int J Solids Struct 41:131–143. doi:10.1016/j.ijsolstr.2003.09.019

    Article  Google Scholar 

  • Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Min Sci Geomech Abstr 13:187–197. doi:10.1016/0148-9062(76)91285-7

    Article  Google Scholar 

  • Migliazza M, Ferrero AM, Spagnoli A (2011) Experimental investigation on crack propagation in Carrara marble subjected to cyclic loads. Int J Rock Mech Min 48:1038–1044. doi:10.1016/j.ijrmms.2011.06.016

    Article  Google Scholar 

  • Nemat-Nasser S, Deng H (1994) Strain-rate effect on brittle failure in compression. Acta Metall Mater 42:1013–1024. doi:10.1016/0956-7151(94)90295-x

    Article  Google Scholar 

  • Olsson W (1991) The compressive strength of tuff as a function of strain rate from 10−6 to 103 sec. Int J Rock Mech Min Sci Geomech Abstr 28:115–118

    Article  Google Scholar 

  • Pankow M, Attard C, Waas AM (2009) Specimen size and shape effect in split Hopkinson pressure bar testing. J Strain Anal Eng Des 44:689–698. doi:10.1243/03093247jsa538

    Article  Google Scholar 

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min 46:819–829. doi:10.1016/j.ijrmms.2009.02.006

    Article  Google Scholar 

  • Rapp G, Wagner GA, Herrmann B (2009) Archaeomineralogy [electronic resource]. In: Herrmann B, Wagner GA (eds) Natural science in archaeology. Springer, Berlin

    Google Scholar 

  • Ravichandran G, Subhash G (1994) critical-appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267

    Article  Google Scholar 

  • Ravichandran G, Subhash G (1995) A micromechanical model for high strain rate behavior of ceramics. Int J Solids Struct 32:2627–2646. doi:10.1016/0020-7683(94)00286-6

    Article  Google Scholar 

  • Rodríguez J, Cortés R, Martínez MA, Sánchez-Gálvez V, Navarro C (1995) Numerical study of the specimen size effect in the split Hopkinson pressure bar tests. J Mater Sci 30:4720–4725. doi:10.1007/bf01153084

    Article  Google Scholar 

  • Ross CA, Thompson PY, Tedesco JW (1989) Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater J 86:475–481

    Google Scholar 

  • Ross CA, Tedesco JW, Kuennen ST (1995) Effects of strain-rate on concrete strength. ACI Mater J 92:37–47

    Google Scholar 

  • Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen CF (1974a) Fragmentation of rock under dynamic loads. Int J Rock Mech Min Sci Geomech Abstr 11:303–317. doi:10.1016/0148-9062(74)91760-4

    Article  Google Scholar 

  • Shockey DA, Curran DR, Seaman L, Rosenberg JT, Petersen CF (1974b) Fragmentation of rock under dynamic loads. Int J Rock Mech Min Sci Geomech Abstr 8:303–317

    Article  Google Scholar 

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182. doi:10.1007/s005310050324

    Article  Google Scholar 

  • Siviour CR (2009) A measurement of wave propagation in the split Hopkinson pressure bar. Meas Sci Technol 20:065702

    Article  Google Scholar 

  • Sylven ET, Agarwal S, Briant CL, Cleveland RO (2004) High strain rate testing of kidney stones. J Mater Sci Mater Med 15:613–617. doi:10.1023/B:JMSM.0000026383.94515.a8

    Article  Google Scholar 

  • Whittles DN, Kingman S, Lowndes I, Jackson K (2006) Laboratory and numerical investigation into the characteristics of rock fragmentation. Miner Eng 19:1418–1429. doi:10.1016/j.mineng.2006.02.004

    Article  Google Scholar 

  • Woldesenbet E, Vinson JR (1999) Specimen geometry effects on high-strain-rate testing of graphite/epoxy composites. AIAA J 37:1102–1106. doi:10.2514/2.820

    Article  Google Scholar 

  • Wong NY (2008) Crack coalescence in molded gypsum and Carrara marble. Dissertation, Massachusetts Institute of Technology

  • Wong LNY, Einstein H (2006) Fracturing behavior of prismatic specimens containing single flaws. In: Association ARM (ed) 41st U.S. rock mechanics symposium—ARMA’s Golden Rocks 2006—50 years of rock mechanics, Golden

  • Wong LNY, Einstein HH (2009a) Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng 42:475–511

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009b) Crack coalescence in molded gypsum and Carrara marble: part 2. Microscopic observations and interpretation. Rock Mech Rock Eng 42:513–545

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009c) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min 46:239–249

    Article  Google Scholar 

  • Wong LNY, Zou C (2012) Cracking processes in rocks under dynamic loading. In: Paper presented at the ARMS7, 7th Asian rock mechanics symposium, Seoul

  • Wu W, Li JC, Zhao J (2012) Loading rate dependency of dynamic responses of rock joints at low loading rate. Rock Mech Rock Eng 45:421–426. doi:10.1007/s00603-011-0212-z

    Article  Google Scholar 

  • Xia K, Nasseri MHB, Mohanty B, Lu F, Chen R, Luo SN (2008) Effects of microstructures on dynamic compression of Barre granite. Int J Rock Mech Min 45:879–887. doi:10.1016/j.ijrmms.2007.09.013

    Article  Google Scholar 

  • Zhang QB, Zhao J (2013) Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng Fract Mech 102:288–309

    Article  Google Scholar 

  • Zhang ZX, Kou SQ, Yu J, Yu Y, Jiang LG, Lindqvist PA (1999) Effects of loading rate on rock fracture. Int J Rock Mech Min 36:597–611. doi:10.1016/s0148-9062(99)00031-5

    Article  Google Scholar 

  • Zhao J (2011) An overview of some recent progress in rock dynamics research. In: Zhou Y, Zhao J (eds) Advances in rock dynamics and applications. CRC Press, pp 5–33. doi:10.1201/b11077-3

  • Zhao et al (1999) Rock dynamics research related to cavern development for ammunition storage. Tunn Undergr Space Tech 14:513–526. doi:10.1016/s0886-7798(00)00013-4

    Article  Google Scholar 

  • Zhou et al (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004

    Article  Google Scholar 

  • Zou C, Wong LNY (2014) Experimental studies on cracking processes and failure in marble under dynamic loading. Eng Geol 173:19–31. doi:10.1016/j.enggeo.2014.02.003

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the assistance of Mr. Weng Kong Cheng and Mr. Phua Kok Soon from CT Lab of Nanyang Technological University in the SHPB test. The authors are also grateful to the suggestions offered by Prof. Arcady Dyskin (The University of Western Australia) and Prof. Antonio Bobet (Purdue University) in the present study. The authors also thank the support of Academic Research Fund (AcRF) Tier 1 funding (RG 19/10 and RG 112/14) from the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ngai Yuen Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Wong, L.N.Y. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings. Rock Mech Rock Eng 49, 1695–1708 (2016). https://doi.org/10.1007/s00603-015-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-015-0899-3

Keywords

Navigation