Skip to main content
Log in

New Apparatus and Experimental Setup for Long-Term Swelling Tests on Sulphatic Claystones

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

An apparatus and experimental setup were developed to carry out a series of extremely slow and long-lasting swelling, creep or chemo-mechanics tests simultaneously. The equipment was designed specifically for investigating the behaviour of sulphatic claystones. The tests will take at least 10–15 years to complete and will provide unprecedented information about the so-called swelling law, i.e. the relationship between swelling strain and swelling stress. The swelling law is very important for designing tunnels in swelling rock. Our knowledge of the swelling law, however, is only sufficiently reliable with respect to claystones without anhydrite (e.g. marls, opalinus clay). The swelling law for sulphatic claystones remains unknown, even in qualitative terms. This is due to the underlying physico-chemical mechanisms, which are fundamentally different from those of purely argillaceous rocks. Another reason is the extremely long duration of the swelling process of clay-sulphate rocks, which makes systematic field or laboratory investigations very difficult. In order to close this knowledge gap, a series of 25 long-term simultaneous swelling tests has been started.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

F :

Repulsive force between clay platelets

H :

Height of sample

p :

Swelling pressure

p max :

Maximum swelling pressure

t :

Time

u :

Tunnel invert heave

δ:

Distance between clay platelets

ΔH :

Change in height of the sample

Δp :

Support pressure

Δu :

Tunnel invert heave

εswell :

Swelling strain

σax :

Axial stress

References

  • Aegerter & Bosshardt AG, Gruner AG (2005) Chienbergtunnel Überwachung, Plan 5535/9926 h. Oberfläche/Tunnel, Tm 400–2294 (Portal Ost), Situation, Längenprofil, Stand 18.11.2005, erstattet an Bau- und Umweltschutzdirektion Kanton Basel-Landschaft

  • Aegerter & Bosshardt AG, Gruner AG (2006) Chienbergtunnel Überwachung, Statusbericht Stand März 2006, erstattet an Bau- und Umweltschutzdirektion Kanton Basel-Landschaft

  • Alonso E, Gens A, Berdugo I, Romero E (2005) Expansive behaviour of a sulphated clay in a railway tunnel. In: Proceedings of the 16th international conference on soil mechanics and geotechnical engineering, Osaka, Japan, September 2005, pp 1583–1586

  • Amstad C, Kovári K (2001) Untertagbau in quellfähigem Fels. Forschungsauftrag 52/94 auf Antrag des Bundesamtes für Strassen (ASTRA)

  • Anagnostou G (2007) Design uncertainties in tunnelling through anhydritic swelling rocks. Felsbau Rock Soil Eng 25(4):48–54

    Google Scholar 

  • Anagnostou G, Pimentel E, Serafeimidis K (2010) Swelling of sulphatic claystones—some fundamental questions and their practical relevance. Geomech Tunnelling 3(5):567–572

    Article  Google Scholar 

  • Aristorenas GV (1992) Time-dependent behavior of tunnels excavated in shale. Doctoral thesis, Massachusetts Institute of Technology, Boston, Massachusetts

  • Barla M (2008) Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests. Tunn Undergr Space Technol 23:508–521

    Article  Google Scholar 

  • Bellwald P (1990) A contribution to the design of tunnels in argillaceous rock. Doctoral thesis, Massachusetts Institute of Technology, Boston, Massachusetts

  • Chiaverio F, Thut A (2010) Rehabilitation using yielding elements of the section in Keuper sediments affected by heave. Geomech Tunnelling 3(5):573–582

    Article  Google Scholar 

  • Einstein HH (1996) Tunnelling in difficult ground—swelling behaviour and identification of swelling rocks. Rock Mech Rock Eng 29(3):113–124

    Article  Google Scholar 

  • Fecker E (1980) Quantitative Zusammenhänge zwischen der mineralogischen Umwandlung von Anhydrit in Gips und der Volumenvergrösserung im Tunnelbau. Forschungsbericht Nr. 15.062 R77E des Lehrstuhls für Felsmechanik der Universität (TH) Fridericiana zu Karlsruhe an die Bundesrepublik Deutschland vertreten durch den BMV

  • Flückiger A, Madsen FT, Nüesch R (1994) Anhydritquellung. Jahresbericht 1994, internal report of the Clay Mineralogy Laboratory of the ETH Zurich

  • Grob H (1972) Schwelldruck im Belchentunnel. In: Proceedings of the international symposium on underground construction, Lucerne, Switzerland, September 1972, pp 99–119

  • Huder J, Amberg G (1970) Quellung in Mergel, Opalinuston und Anhydrit. Schweizerische Bauzeitung, 88 Jahrgang Heft 43:975–980

  • International Society for Rock Mechanics (ISRM) (1994) Comments and recommendations on design and analysis procedures for structures in argillaceous swelling rock. Int J Rock Mech Min Sci Geomech Abstr 31:535–546

    Article  Google Scholar 

  • International Society for Rock Mechanics (ISRM) (1999) Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci 36:291–306

    Article  Google Scholar 

  • Kirschke D (1987) Laboratory and in situ swelling test for the Freudenstein tunnel. In: Proceedings of the 6th international congress on rock mechanics, Montreal, Canada, August/September 1987, vol 3, pp 1492–1496

  • Ko SC, Nüesch R, Madsen FT (1997) Tonmineralien und Sulfatgesteine als Ursachen für druckhaftes Verhalten von Gesteinen. Forschungsprojekt Quellverhalten der Juragesteine

  • Kovári K, Amstad Ch, Anagnostou G (1988) Design/construction methods—tunnelling in swelling rocks. In: Cundall PA et al. (eds) Proceedings of the 29th U.S. Symposium. Key questions in rock mechanics, Minnesota, Minneapolis, June 1988, pp 17–32

  • Kovári K, Fecker E, Amstad Ch (1986) Freudensteintunnel Versuchsstrecke U1—Mess- und Untersuchungsprogramm. Bericht des IBETH, Fels- und Untertagbau ETH Zürich und der Ges. für Baugeologie und—messtechnik mbH erstattet an die Deutsche Bundesbahn, NBS Mannheim Stuttgart, August 1986

  • Kovári K, Chiaverio F (2007) Modulares Knautschsystem für Tunnel in stark quellfähigem Gebirge. STUVA TAGUNG’07, Forschung + Praxis 42, bau verlag, Gütersloh, pp 195–200

  • Langbein R, Peter H, Schwahn HJ (1982) Karbonat- und Sulfatgesteine. Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Madsen FT (1976) Quelldruckmessung an Tongesteinen und Berechnung des Quelldrucks nach der DLVO—Theorie. Mitteilungen des Institutes für Grundbau und Bodenmechanik der ETH Zürich. Nr. 108, pp 1–65

  • Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156

    Article  Google Scholar 

  • Madsen FT, Nüesch R (1990) Langzeitquellverhalten von Tongesteinen und tonigen Sulfatgesteinen: Mitteilungen des Institutes für Grundbau und Bodenmechanik der ETH Zürich, Nr. 140

  • Nüesch R, Steiner W, Madsen FT (1995) Long time swelling of anhydritic rocks: mineralogical and microstructural evaluation. In: Proceedings of the 8th international congress on rock mechanics, Tokyo, Japan, September 1995, pp 133–138

  • Pregl O, Fuchs M, Müller H, Petschl G, Riedmüller G, Schwaighofer B (1980) Dreiaxiale Schwellversuche an Tongesteinen. In: Geotechnik 3, Heft 1

  • Pimentel E (1996) Quellverhalten von diagenetisch verfestigtem Tonstein. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Karlsruhe. Heft 139

  • Pimentel E (2003a) Swelling behaviour of sedimentary rocks under consideration of micromechanical aspects and its consequences on structure design. In: Proceedings of the international symposium on geotechnical measurements and modelling, Karlsruhe, Germany, September 2003, pp 367–374

  • Pimentel E (2003b) Langzeitschwellversuche an Probenmaterial aus dem Freudensteintunnel. Zwischenbericht für den Zeitraum 0.1.01.2001–01.10.2003. Bericht des Lehrstuhls der Universität Karlsruhe, erstattet an die DB Projekte Süd GmbH

  • Pimentel E (2007) A laboratory testing technique and a model for the swelling behavior of anhydritic rock. In: Proceedings of the 11th international congress on rock mechanics of the ISRM, Lisbon, Portugal, July 2007, vol 1, pp 14–146

  • Pimentel E, Anagnostou G (2010) Langzeitquellversuche an anhydritführenden Gesteinen. Forschungsauftrag FGU 2006/001 auf Antrag des Bundesamtes für Strassen (ASTRA), FB 1318

  • Späth H (1973) Algorithmen für elementare Ausgleichsmodelle. R. Oldenbourg Verlag GmbH, München

    Google Scholar 

  • van Olphen H (1963) An introduction to clay colloid chemistry. Interscience Publishers, New York

    Google Scholar 

  • Vögtli B, Jordan P (1996) Quelldruckentwicklung in Ton-und Sulfatgesteinen. Schweizer Ingenieur-und Architektenverein 18:350–352

    Google Scholar 

  • Wahlen R (2009) Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge. WBI-Print 17. VGE Verlag GmbH

Download references

Acknowledgments

The authors appreciate the financial aid and support for this project from FEDRO (the Swiss Federal Road Office), SBB (the Swiss Federal Railways) and the Authorities of the Canton Basel Country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Pimentel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, E., Anagnostou, G. New Apparatus and Experimental Setup for Long-Term Swelling Tests on Sulphatic Claystones. Rock Mech Rock Eng 46, 1271–1285 (2013). https://doi.org/10.1007/s00603-013-0396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-013-0396-5

Keywords

Navigation