Skip to main content
Log in

Full-Scale Dynamic Analysis of an Innovative Rockfall Fence Under Impact Using the Discrete Element Method: from the Local Scale to the Structure Scale

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

In order to protect infrastructures against rockfalls, civil-engineered mitigation measures are widely used. Flexible metallic fences are particularly well suited to stop the propagation of blocks of rock whose kinetic energy can reach 5000 kJ before impact. This paper focuses on the design of highly flexible rockfall fences under the new European guideline ETAG027. The experimental testing and the numerical modeling using the discrete element method (DEM) of a new metallic rockfall fence are presented. Several scales of study were considered; the mesh, the net and the entire structure. The calibration of the DEM models is described and a parametrical study is proposed. The latter aims to underline the type of information that can be obtained from numerical simulations of such a system to enhance its design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux.

  2. Laboratoire des Ponts et Chaussées.

References

  • Agliardi F, Crosta G, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059–1073

    Article  Google Scholar 

  • Bertolo P, Oggeri C, Peila D (2009) Full-scale testing of draped nets for rock fall protection. Can Geotech J 46:306–317

    Article  Google Scholar 

  • Bertrand D, Nicot F, Gotteland P, Lambert S (2008) Discrete element method (DEM) numerical modeling of a double-twisted hexagonal mesh. Can Geotech J 45:1104–1117

    Article  Google Scholar 

  • Bourrier F, Bigot C, Bertrand D, Lambert S, Berger F (2010) A numerical model for the design of low energy rockfall protection nets. In: Euro mediterranean symposium on advances in geomaterials and structures, pp 407–412

  • Calvetti F, Genchi R, Nesta L, Nova R (1997) Numerical simulation of rock block impacts on rigid sheds. In: Pietruszczak S, Pande G (eds) Numerical models in. geomechanics—NUMOG VI. Balkema, pp 635–640

  • Castro-Fresno D, del Coz Diaz J, Lopez L, Nieto PG (2008) Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation. Eng Geol 100:1–10

    Article  Google Scholar 

  • Cazzani A, Mongiovi L, Frenez T (2002) Dynamic finite element analysis of interceptive devices for falling rocks. Int J Rock Mech Min Sci 39:303–321

    Article  Google Scholar 

  • Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  • Delhomme F, Mommessin M, Mougin J, Perrotin P (2007) Simulation of a block impacting a reinforced concrete slab with a finite element model and a mass-spring system. Eng Struct 29:2844–2852

    Article  Google Scholar 

  • Dragon A, Hild F, Rota L, Trumel H (2000) Modélisation du comportement et de la rupture des matriaux sous sollicitation dynamiques. Mécanique et Industrie 1(5):521–537

    Article  Google Scholar 

  • Dumoulin J, Bost M, Merliot E, Dubois L, Rocher-Lacoste F, Cottineau L, Bourquin F (2011) Design, conception and realisation of high energetic mechanical impacts on a civil engineering structure to evaluate sensing techniques in ISTIMES project framework. In: European Geoscience Union (EGU)

  • ETAG027 (2008) Guide d’agrément technique européen des "kits de protection contre les chutes de blocs rocheux", Tech. rep., European Organisation for Technical Approvals—ETAG027, 2008

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:99–111

    Article  Google Scholar 

  • Gerber W (1999) Highly flexible wire net rockfall barriers. In: Masuya H, Labiouse V (eds) Joint Japan-Swiss Scientific Seminar on impact load by rock falls and design of protection structures, pp 37–42

  • Gottardi G, Govoni L (2010) Full-scale modelling of falling rock protection barriers. Rock Mech Rock Eng 43:261–274

    Article  Google Scholar 

  • Gotteland P, Bertrand D, Lambert S, Nicot F (2005) Modelling an unusual geocomposite material barrier against a rockfall impact. In: Proceedings of the 11th International Congress of IACMAG Turino (Italy), pp 529–536

  • Grassl H (2002) Experimentelle und numerischemodellierungdes dynamischentrag-und verformungsverhaltensvon hochflexiblen schutzsystemengegen steinschlag, PhD thesis, Technische Universitat Munchen

  • Grassl H, Volkwein A, Anderheggen E, Amman W (2002) Steel-net rockfall protection experimental and numerical simulation. In: Jones N, B. C., Structures Under Shock and Impact VII. p 11, WIT Press

  • Grassl H, Volkwein A, Bartelt P (2003) Experimental and numerical modeling of highly flexible rockfall protection barriers. In: Proceedings of soil and rock America

  • Hearn G, Barrett R, Henson H (1995a) Testing and modeling two rockfall barriers. Transp Res Record 1504:1–11

    Google Scholar 

  • Hearn G, Barrett R, Henson H (1995b) Development of effective rockfall barriers. J Transp Eng 121:507–516

    Article  Google Scholar 

  • Heiss C (2004) Characteristics of the testing of rockfall protection kits on tansversl test sites on example "steirischer erzberg". In: 10eme Corgresso INTERPRAVENT, Trento, Italy

  • Hentz S, Donzé F, Daudeville L (2004) Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Comput Struct 82:2509–2524

    Article  Google Scholar 

  • Lambert S, Bertrand D, Nicot F, Gotteland P (2008) Impact of geo-cells used for in rock fall protection dykes. In: Structures under shock and impact X, Transactions on the built environment, vol 98, pp 197–206

  • Morton E, Thompson A, Villaescusa E, Roth A (2007) Testing and analysis of steel wire mesh for mining applications of rock surface support. In: e Sousa R, Olalla C, Grossman N (eds) 11th congress of the international society for rock mechanics, vol 2, pp 1061–1064, Lisbon

  • Muhunthan B, Shu S, Sasiharan N, Hattamleh O, Badger T, Lowell S, Duffy J (2005) Analysis and design of wire mesh/cable net slope protection, Tech. rep., Washington State Transportation Center

  • Muraishi H, Samizo M, Sugiyama T (2005) Development of a flexible low-energy rockfall protection fence. Q Report Railway Tech Res Inst 46(3):161–166

    Google Scholar 

  • Mustoe G, Huttelmaier H (1993) Dynamic simulation of a rockfall fence by the discrete element method. Microcomput Civil Eng 8:423–437

    Article  Google Scholar 

  • Nicot F, Cambou B, Mazzoleni G (2001) Design of rockfall restraining nets from a discrete element modelling. Rock Mech Rock Eng 34(2):99–118

    Article  Google Scholar 

  • Oggeri C, Peila D, Valfre A (2006) Dimensionamento di barriere paramassi a rete. La Strade 10:158–164

    Google Scholar 

  • Papathoma-Kohle M, Kappes M, Keiler M, Glade T (2010) Physical vulnerability assessment for alpine hazards: state of the art and future needs. Nat Hazards 58(2):645–680

    Article  Google Scholar 

  • Peila D, Guardini C (2008) Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Nat Hazards Earth Syst Sci 8:1441–1450

    Article  Google Scholar 

  • Peila D, Ronco C (2009) Technical note: design of rockfall net fences and the new ETAG 027 european guideline. Nat Hazards Earth Syst Sci 9:1291–1298

    Article  Google Scholar 

  • Peila D, Pelizza S, Sassudelli F (1998) Evaluation of behaviour of rockfall restraining nets by full scale tests. Rock Mech Rock Eng 31(1):1–24

    Article  Google Scholar 

  • Player J, Morton E, Thompson A, Villaescusa E (2008) Static and dynamic testing of steel wire mesh for mining applications of rock surface support. In: 6th international symposium on ground support in mining and civil engineering construction

  • Ronco C, Oggeri C, Peila D (2009) Design of reinforced ground embankments used for rockfall protection. Nat Hazards Earth Syst Sci 9:1189–1199

    Article  Google Scholar 

  • Sasiharan N, Muhunthan B, Badger T, Shu S, Carradine D (2006) Numerical analysis of the performance of wire mesh and cable net rockfall protection systems. Eng Geol 88:121–132

    Article  Google Scholar 

  • Smith D, Duffy J (1990) Field tests and evaluation of rockfall restraining nets, Tech. rep., Office of Transportation Materials and Research—California Department of Transportation, cA/TL-90/05

  • Spadoni L (2009) Modellazione numerica di una barriera paramassi a rete, Master's thesis, Universita degli studi di Bologna

  • Trad A, Limam A, Robit P (2010) New energy dissipating device for rockfall protection barriers. In: Euro mediterranean symposium on advances in geomaterials and structures

  • Volkwein A (2005a) Numerical simulation of flexible rockfall protection systems. In: Proceedings of the 2005 ASCE international conference on computing in civil engineering

  • Volkwein A, Melis L, Haller B, Pfeiffer R (2005b) Protection from landslides and high speed rockfall events—reconstruction of chapman's peak drive. In: Proceedings of structures and extreme events

  • Volkwein A, Roth A, Gerber W, Vogel A (2009) Flexible rockfall barriers subjected to extreme loads. Struct Eng Int 19(3):327–332

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren L, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Nat Hazard Earth Syst Sci 11:2617–2651

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work was developed by Remi Chauvel, a civil engineering student of INSA Lyon. The authors are very grateful to him for his participation in this project. Moreover, this work has been partially supported by the private partner G.T.S. Travaux Géotechnique et Sécurisation (P. Robit) which developed the ELITE© rockfall fences presented in this paper. The support of the research laboratory L.G.C.I.E. of INSA Lyon, as well as the technical assistance, are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, D., Trad, A., Limam, A. et al. Full-Scale Dynamic Analysis of an Innovative Rockfall Fence Under Impact Using the Discrete Element Method: from the Local Scale to the Structure Scale. Rock Mech Rock Eng 45, 885–900 (2012). https://doi.org/10.1007/s00603-012-0222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-012-0222-5

Keywords

Navigation