Skip to main content
Log in

Size-Scale Effects on Strength, Friction and Fracture Energy of Faults: A Unified Interpretation According to Fractal Geometry

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary.

Experimental results clearly indicate that large faults involved in earthquakes possess low strength, low friction coefficient and high fracture energy, in comparison with data obtained from small scale laboratory tests on rock samples. The reasons for such an unexpected anomalous behaviour have been the subject of several studies in the past and are still under debate in the Scientific Community. In this paper we propose a unifying interpretation of these size-scale effects on the basis of fractal geometry, which represents the proper mathematical framework for the analysis of multi-scale properties of rough surfaces in contact. A rather good agreement between the proposed scaling laws and the experimental data ranging from the laboratory scale up to the planetary scale typical of natural faults is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. E. Abercrombie J. R. Rice (2005) ArticleTitleCan observations of earthquake scaling constrain slip weakening? Geophys. J. Int. 162 406–424 Occurrence Handle10.1111/j.1365-246X.2005.02579.x

    Article  Google Scholar 

  • D. J. Andrews (1976) ArticleTitleRupture velocity of plane-strain cracks J. Geophys. Res. 81 5679–5687 Occurrence Handle10.1029/JB081i032p05679

    Article  Google Scholar 

  • S. Bandis A. C. Lumsden N. R. Barton (1981) ArticleTitleExperimental studies of scale effects on the shear behaviour of rock joints Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18 1–21

    Google Scholar 

  • B. Barriere D. L. Turcotte (1991) ArticleTitleA scale-invariant cellular automata model for distributed seismicity Geophys. Res. Lett. 18 2011–2014 Occurrence Handle10.1029/91GL02415

    Article  Google Scholar 

  • M. Borri-Brunetto A. Carpinteri B. Chiaia (1999) ArticleTitleScaling phenomena due to fractal contact in concrete and rock fractures Int. J. Fract. 95 221–238 Occurrence Handle10.1023/A:1018656403170

    Article  Google Scholar 

  • M. Borri-Brunetto B. Chiaia M. Ciavarella (2001) ArticleTitleIncipient sliding of rough surfaces in contact: a multi-scale numerical analysis Comput. Methods Appl. Mech. Eng. 190 6053–6073 Occurrence Handle10.1016/S0045-7825(01)00218-3

    Article  Google Scholar 

  • S. R. Brown C. H. Scholz (1985) ArticleTitleBroad bandwith study of the topography of natural rock surfaces J. Geophys. Res. 90 12575–12582 Occurrence Handle10.1029/JB090iB14p12575

    Article  Google Scholar 

  • M. Brudy M. D. Zoback K. Fuchs F. Rummel J. Baumgartner (1997) ArticleTitleEstimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes – implications for crustal strength J. Geophys. Res. 102 453–475 Occurrence Handle10.1029/96JB02942

    Article  Google Scholar 

  • A. Carpinteri (1994a) ArticleTitleFractal nature of materials microstructure and size effects on apparent mechanical properties Mech. Mater. 18 89–101 Occurrence Handle10.1016/0167-6636(94)00008-5

    Article  Google Scholar 

  • A. Carpinteri (1994b) ArticleTitleScaling laws and renormalization groups for strength and toughness of disordered materials Int. J. Solids Struct. 31 291–302 Occurrence Handle10.1016/0020-7683(94)90107-4

    Article  Google Scholar 

  • A. Carpinteri B. Chiaia (1996) ArticleTitlePower scaling laws and dimensional transitions in solid mechanics Chaos Soliton. Fract. 7 1343–1364 Occurrence Handle10.1016/0960-0779(96)00016-1

    Article  Google Scholar 

  • A. Carpinteri M. Paggi (2005) ArticleTitleSize-scale effects on the friction coefficient Int. J. Solids Struct. 42 2901–2910 Occurrence Handle10.1016/j.ijsolstr.2004.10.001

    Article  Google Scholar 

  • A. Carpinteri N. Pugno (2005) ArticleTitleAre scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4 421–423 Occurrence Handle10.1038/nmat1408

    Article  Google Scholar 

  • B. K. Chakrabarti R. B. Stinchcombe (1999) ArticleTitleStick-slip statistics for two fractal surfaces: a model for earthquakes Physica. A 270 27–34 Occurrence Handle10.1016/S0378-4371(99)00146-6

    Article  Google Scholar 

  • Chambon, G., Schmittbuhl, J., Corfdir, A. (2005): Non-linear slip-weakening in a rotary gouge friction experiment. In: Proc. 11th Int. Conf. Fracture ICF 11, Torino, Italy

  • J. S. Chester F. M. Chester A. K. Kronenberg (2005) ArticleTitleFracture surface energy of the Punchbowl fault, San Andreas system Nature 437 133–136 Occurrence Handle10.1038/nature03942

    Article  Google Scholar 

  • B. Chiaia (2002) ArticleTitleOn the sliding instabilities at rough surfaces J. Mech. Phys. Solids 50 895–924 Occurrence Handle10.1016/S0022-5096(01)00100-4

    Article  Google Scholar 

  • Dieterich, J. H. (1981): Constitutive properties of faults with simulated gouge. In: Carter, N. L., Friedman, M., Logan, J. M., Stearns, D. W. (eds.), Mechanical behavior of crustal rocks. American geophysical union geophysical monograph, vol. 24. AGU, Washington, DC, 103–120

  • G. Di Toro S. Nielsen G. Pennacchioni (2005) ArticleTitleEarthquake rupture dynamics frozen in exhumed ancient faults Nature 436 1009–1012 Occurrence Handle10.1038/nature03910

    Article  Google Scholar 

  • G. Di Toro T. Hirose S. Nielsen G. Pennacchioni T. Shimamoto (2006) ArticleTitleNatural and experimental evidence of melt lubrication of faults during earthquakes Science 311 647–649 Occurrence Handle10.1126/science.1121012

    Article  Google Scholar 

  • P. Gillespie J. J. Walsh J. Watterson (1992) ArticleTitleLimitations of displacement and dimension data from single faults and the consequences for data analysis and interpretation J. Struct. Geol. 14 1157–1172 Occurrence Handle10.1016/0191-8141(92)90067-7

    Article  Google Scholar 

  • J. A. Greenwood J. B. P. Williamson (1966) ArticleTitleContact of nominally flat surfaces Proc. R. Soc. A 295 300–308 Occurrence Handle10.1098/rspa.1966.0242

    Article  Google Scholar 

  • R. Hallgass V. Loreto O. Mazzella G. Paladin L. Pietronero (1997) ArticleTitleEarthquake statistics and fractal faults Phys. Rev. E 56 1346–1356 Occurrence Handle10.1103/PhysRevE.56.1346

    Article  Google Scholar 

  • Y. Ida (1972) ArticleTitleCohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy J. Geophys. Res. 77 3796–3805 Occurrence Handle10.1029/JB077i020p03796

    Article  Google Scholar 

  • A. Lachenbruch J. Sass (1980) ArticleTitleHeat flow and energetics of the San Andreas fault zone J. Geophys. Res. 85 6185–6223 Occurrence Handle10.1029/JB085iB11p06185

    Article  Google Scholar 

  • A. Lachenbruch J. Sass (1992) ArticleTitleHeat flow from Cajon Pass, fault strength and tectonic implications J. Geophys. Res. 97 4995–5015 Occurrence Handle10.1029/91JB01506

    Article  Google Scholar 

  • V. C. Li (1987) Mechanics of shear rupture applied to earthquake zones B. Atkison (Eds) Fracture mechanics of rock Academic Press London 351–428

    Google Scholar 

  • B. B. Mandelbrot (1982) Fractals geometry of nature Freeman New York

    Google Scholar 

  • B. B. Mandelbrot D. E. Passoja A. J. Paullay (1984) ArticleTitleFractal character of fracture surfaces of metals Nature 308 721–722 Occurrence Handle10.1038/308721a0

    Article  Google Scholar 

  • R. A. Marrett R. W. Allmendinger (1991) ArticleTitleEstimates of strain due to brittle faulting: sampling of fault populations J. Struct. Geol. 13 735–738 Occurrence Handle10.1016/0191-8141(91)90034-G

    Article  Google Scholar 

  • P. G. Okubo J. H. Dieterich (1984) ArticleTitleEffects of physical fault properties on frictional instabilities produced on simulated faults J. Geophys. Res. 89 5817–5827 Occurrence Handle10.1029/JB089iB07p05817

    Article  Google Scholar 

  • W. L. Power T. E. Tullis (1991) ArticleTitleEuclidean and fractal models for the description of rock surface roughness J. Geophys. Res. 96 415–424 Occurrence Handle10.1029/90JB02107

    Article  Google Scholar 

  • A. Ruina (1983) ArticleTitleSlip instability and state variable friction laws J. Geophys. Res. 88 10359–10370 Occurrence Handle10.1029/JB088iB12p10359

    Article  Google Scholar 

  • M. Sahimi M. C. Robertson C. G. Sammis (1992) ArticleTitleRelations between the earthquake statistics and fault patterns, and fractals and percolation Physica. A 191 57–68 Occurrence Handle10.1016/0378-4371(92)90506-L

    Article  Google Scholar 

  • C. H. Scholz (2002) The mechanics of earthquakes and faulting EditionNumber2 Cambridge Univ. Press Cambridge

    Google Scholar 

  • Scholz, C. H. (2005): The scaling of geological faults. In: Proc. 11th Int. Conf. Fracture ICF 11, Torino, Italy

  • C. H. Scholz N. H. Dawers J.-Z. Yu M. H. Anders (1993) ArticleTitleFault growth and fault scaling laws: preliminary results J. Geophys. Res. 98 21951–21961 Occurrence Handle10.1029/93JB01008

    Article  Google Scholar 

  • C. H. Scholz B. B. Mandelbrot (1989) Fractals in geophysics Birkhäuser Verlag Basel

    Google Scholar 

  • J. Townend M. D. Zoback (2004) ArticleTitleRegional tectonic stress near the San Andreas fault in central and southern California Geophys. Res. Lett. 31 L15S11 Occurrence Handle10.1029/2003GL018918

    Article  Google Scholar 

  • D. L. Turcotte (1989) Fractals and chaos in geology and geophysics Cambridge Univ. Press Cambridge

    Google Scholar 

  • W. Wang C. Scholz (1993) ArticleTitleScaling of constitutive parameters of friction for fractal surfaces Int. J. Rock Mech. 30 1359–1365 Occurrence Handle10.1016/0148-9062(93)90122-T

    Article  Google Scholar 

  • J. Watterson (1986) ArticleTitleFault dimensions, displacements and growth Pure Appl. Geophys. 124 365–373 Occurrence Handle10.1007/BF00875732

    Article  Google Scholar 

  • K. G. Wilson (1971) ArticleTitleRenormalization group and critical phenomena Phys. Rev. B 4 3174–3205 Occurrence Handle10.1103/PhysRevB.4.3174

    Article  Google Scholar 

  • M. D. Zoback R. Apel J. Baumgaertner M. Brudy R. Emmermann B. Engeser K. Fuchs W. Kessels H. Rischmueller F. Rummel L. Vernik (1993) ArticleTitleStrength of continental crust and the transmission of plate-driving forces: implications of in situ stress measurements in the KTB scientific borehole Nature 365 633–635 Occurrence Handle10.1038/365633a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author’s address: Marco Paggi, Politecnico di Torino, Department of Structural and Geotechnical Engineering, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Paggi, M. Size-Scale Effects on Strength, Friction and Fracture Energy of Faults: A Unified Interpretation According to Fractal Geometry. Rock Mech Rock Eng 41, 735–746 (2008). https://doi.org/10.1007/s00603-007-0148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-007-0148-5

Navigation