Skip to main content

Advertisement

Log in

Centrifuge Modeling of Rock Slopes Susceptible to Block Toppling

  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Summary

This paper presents the results of centrifuge tests that were aimed at validating the Goodman-Bray method for rock slope toppling analysis. The Goodman-Bray method was extended by the authors to accommodate non-persistent basal planes of rock columns. Two gypsum column models, with and without anchors were used to represent the failure modes. Measured critical centrifuge accelerations were in agreement with the results obtained from numerical modeling. A background of the toppling slope failures associated with a large hydropower project in China instigated the need for the centrifuge study. The centrifuge model tests used an artificial rock. The observed failure mode did not follow a straight failure plane as proposed by Goodman and Bray. The failures revealed a bi-planar slip surface with a deep-seated portion near the toe of the slope. The outcomes of the centrifuge tests illustrated the need to search for the critical failure surface when performing a toppling analysis. The search technique is similar to that usually performed in a conventional sliding analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. P. Adhikary A. V. Dyskin R. J. Jewell (1996) ArticleTitleNumerical modelling of the flexural deformation of foliated rock slopes Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 IssueID6 595–606 Occurrence Handle10.1016/0148-9062(96)00008-3

    Article  Google Scholar 

  • D. P. Adhikary A. V. Dyskin R. J. Jewell D. P. Stewart (1997) ArticleTitleStudy of the mechanism of flexural toppling failure of rock slopes Rock Mech. Rock Engng. 30 IssueID2 75–93 Occurrence Handle10.1007/BF01020126

    Article  Google Scholar 

  • T. L. Anderson (1995) Fracture mechanics: fundamentals and applications CRC Press Soca Raton

    Google Scholar 

  • Ashiby, J. (1971): Sliding and toppling modes of failure in model and jointed rock slopes. M.Sc. Thesis, Imperial College, Royal School of Mines, London.

  • O. Aydan T. Kawamoto (1992) ArticleTitleThe stability of slopes and underground opening against flexural toppling and their stabilization Rock Mech. Rock Engng. 25 IssueID3 143–165 Occurrence Handle10.1007/BF01019709

    Article  Google Scholar 

  • O. Aydan Y. Shimizu T. Kawamoto (1996) ArticleTitleAnisotropy of surface morphology characteristics of rock discontinuities Rock Mech. Rock Engng. 29 IssueID1 47–59 Occurrence Handle10.1007/BF01019939

    Article  Google Scholar 

  • Barton, N. (1971): A model study of the behavior of steep excavated rock slopes, Ph.D. Thesis, Imperial College, Royal School of Mines, London.

  • A. Bobet (1999) ArticleTitleAnalytical solutions for toppling failure Int. J. Rock Mech. Mini. Sci. 36 IssueID7 971–980 Occurrence Handle10.1016/S0148-9062(99)00059-5

    Article  Google Scholar 

  • J. W. Bray R. E. Goodman (1981) ArticleTitleThe theory of base friction models Int. J. Rock Mech. Mini. Sci. Geomech. Abstr. 18 453–468 Occurrence Handle10.1016/0148-9062(81)90510-6

    Article  Google Scholar 

  • A. Brown M. Hittinger R. E. Goodman (1980) ArticleTitleFinite element study of the Levis Bluff (New Zealand) rock slope failure Rock Mech. 12 231–245 Occurrence Handle10.1007/BF01251027

    Article  Google Scholar 

  • Chen, Z. Y. (1995): Keynote Lecture: Recent developments in slope stability analysis. 8th International Congress on Rock Mechanics, vol. 3, 1041–1048, September, Tokyo, 25–30.

  • Z. Y. Chen J. H. Zhang X. G. Wang (1996) ArticleTitleExtensions of the Goodman-Bray method for slope toppling analysis Chin. J. Geotechn. Engng. 18 IssueID6 92–95

    Google Scholar 

  • Cundall, P. A. (1971): A computer model for simulating progressive, large scale movements in blocky rock systems. International Symposium on Rock Fractures. Nancy, France, paper II–8.

  • H. H. Einstein D. Venieziano G. B. Baecher K. J. O’Reilly (1983) ArticleTitleThe effect of discontinuity persistence on rock slope stability Int. J. Rock Mech. Mini. Sci. 20 IssueID3 227–236 Occurrence Handle10.1016/0148-9062(83)90003-7

    Article  Google Scholar 

  • Goodman, R. E., Bray, J. W. (1976): Toppling of rock slopes. The Specialty Conference on Rock Engineering for Foundation and Slopes. ASCE/Boulder, Colorado.

  • Hittinger, M. (1978): Numerical analysis of toppling failure in jointed rock. Ph.D. Thesis, University of California, Berkeley.

  • E. Hoek J. W. Bray (1977) Rock slope engineering EditionNumberRevised 2nd edn Institute of Mining and Metallurgy London

    Google Scholar 

  • T. Ishida M. Chigira S. Hibino (1987) ArticleTitleApplication of the distinct element method for analysis of toppling observed on a fissured rock slope Rock Mech. Rock Engng. 20 277–283 Occurrence Handle10.1007/BF01024646

    Article  Google Scholar 

  • Jennings, J. E. (1970): A mathematical theory for the calculation of the stability of open cut mines. Symposium on the Theoretical Background to the Planning of Open pit Mines, Johannesburg, 87–102.

  • E. Z. Lajtai (1969) ArticleTitleStrength of discontinuous rocks in shear Geotechnique 19 IssueID2 218–233 Occurrence Handle10.1680/geot.1969.19.2.218

    Article  Google Scholar 

  • F. Lanaro L. Jing O. Stephansson G. Barla (1997) ArticleTitleDEM modelling of laboratory tests of block toppling Int. J. Rock Mech. Mini. Sci. 34 IssueID3–4 506–507 Occurrence Handle10.1016/S1365-1609(97)00042-7

    Article  Google Scholar 

  • S. L. Nichol O. Hungr S. G. Evans (2002) ArticleTitleLarge-scale brittle and ductile toppling of rock slopes Can. Geotechn. J. 39 773–788 Occurrence Handle10.1139/t02-027

    Article  Google Scholar 

  • M. A. Pritchard K. W. Savigny (1990) ArticleTitleNumerical modelling of toppling Can. Geotechn. J. 27 823–834 Occurrence Handle10.1139/t90-095

    Article  Google Scholar 

  • M. A. Pritchard K. W. Savigny (1991) ArticleTitleThe Heather Hill landslide, an example of a large scale toppling failure in a natural slope Can. Geotechn. J. 28 410–422 Occurrence Handle10.1139/t91-051

    Article  Google Scholar 

  • K. S. Sarma (1979) ArticleTitleStability analysis of embankments and slopes J. Geotechn. Engng. ASCE 105 IssueIDGT. 12 1511–1524

    Google Scholar 

  • Stewart, D. P., Adhikary, D. P., Jewell, R. J. (1994): Studies on the stability of model rock slopes. Centrifuge 94, Singapore, August, 1994, 629–634.

  • J. R. Tosney D. Milne A. V. Chance F. Amon (2004) ArticleTitleVerification of a large scale slope instability mechanism at Highland Valley Copper Int. J. Surface Min. Reclam. Environm. 18 IssueID4 273–288 Occurrence Handle10.1080/1389526042000263324

    Article  Google Scholar 

  • X. G. Wang Z. Y. Chen W. S. Liu (1992) ArticleTitleDetermining the rock joint persistency and shear strength of rock masses Chin. J. Rock Mech. Engng. 11 IssueID4 345–365

    Google Scholar 

  • Zhang, J. H., Chen, Z. Y., Wang, X. G., Han, L. B. (1998): Stability of a toppling slope. In: Proc., Int. Conference Centrifuge 98, vol. 1, Balkema, Rotterdam, pp 621–626.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, Z. & Wang, X. Centrifuge Modeling of Rock Slopes Susceptible to Block Toppling. Rock Mech. Rock Engng. 40, 363–382 (2007). https://doi.org/10.1007/s00603-006-0112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-006-0112-9

Navigation