Skip to main content

Advertisement

Log in

Properties of Neutron Star Crust with Improved Nuclear Physics: Impact of Chiral EFT Interactions and Experimental Nuclear Masses

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A compressible liquid-drop approach adjusted to uniform matter many-body calculations based on chiral EFT interactions and to the experimental nuclear masses is used to investigate the neutron star crust properties. Eight chiral EFT hamiltonians and a representative phenomenological force (SLy4) are confronted. We show that some properties of the crust, e.g. clusters mass, charge, and asymmetry, are mostly determined by symmetric matter properties close to saturation density and are therefore mainly constrained by experimental nuclear masses, while other properties, e.g., energy per particle, pressure, sound speed, are mostly influenced by low-density predictions in neutron matter, where chiral EFT and phenomenological forces substantially differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Rezzolla, P.A.M. Pizzochero, D.I. Jones, N. Rea, I. Vidaña, The Physics and Astrophysics of Neutron Stars, vol. 457 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-97616-7. https://www.springer.com/gp/book/9783319976150

  2. A. Carbone, A. Cipollone, C. Barbieri, A. Rios, A. Polls, Phys. Rev. C 88, 054326 (2013)

    Article  ADS  Google Scholar 

  3. K. Hebeler, J. Holt, J. Menéndez, A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65(1), 457 (2015)

    Article  ADS  Google Scholar 

  4. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 122, 042501 (2019)

    Article  ADS  Google Scholar 

  5. J. Lynn, I. Tews, S. Gandolfi, A. Lovato, Annu. Rev. Nucl. Part. Sci. 69(1), 279 (2019)

    Article  ADS  Google Scholar 

  6. A. Rios, Front. Phys. 8, 387 (2020)

    Article  Google Scholar 

  7. H. Heiselberg, V. Pandharipande, Annu. Rev. Nucl. Part. Sci. 50(1), 481 (2000). https://doi.org/10.1146/annurev.nucl.50.1.481

    Article  ADS  Google Scholar 

  8. J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003). https://doi.org/10.1103/PhysRevC.68.025802

    Article  ADS  Google Scholar 

  9. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  10. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860(2), 149 (2018). https://doi.org/10.3847/1538-4357/aac267

    Article  ADS  Google Scholar 

  11. C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Phys. Rev. Lett. 125, 202702 (2020)

    Article  ADS  Google Scholar 

  12. G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175(2), 225 (1971). https://doi.org/10.1016/0375-9474(71)90281-8

    Article  ADS  Google Scholar 

  13. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  14. F. Douchin, P. Haensel, J. Meyer, Nucl. Phys. A 665, 419 (2000)

    Article  ADS  Google Scholar 

  15. T. Carreau, F. Gulminelli, J. Margueron, Eur. Phys. J. A 55, 188 (2019)

    Article  ADS  Google Scholar 

  16. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018)

    Article  ADS  Google Scholar 

  17. G. Grams, R. Somasundaram, J. Margueron, S. Reddy. arXiv:2110.00441 (nuclei-th) (2021)

  18. A.W. Steiner, Phys. Rev. C 77, 035805 (2008). https://doi.org/10.1103/PhysRevC.77.035805

    Article  ADS  Google Scholar 

  19. I. Tews, Phys. Rev. C 95, 015803 (2017). https://doi.org/10.1103/PhysRevC.95.015803

    Article  ADS  Google Scholar 

  20. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627, 710 (1997)

    Article  ADS  Google Scholar 

  21. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016)

    Article  ADS  Google Scholar 

  22. C. Drischler, J. Holt, C. Wellenhofer. arXiv:2101.01709v1 [nucl-th] (2021)

  23. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Addison-Wesley, Lonson, 1969)

    MATH  Google Scholar 

  24. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41(3), 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

    Article  ADS  Google Scholar 

  25. W.G. Newton, M. Gearheart, B.A. Li, Astrophys. J. Suppl. Ser. 204(1), 9 (2012)

    Article  ADS  Google Scholar 

  26. A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, Astron. Astrophys. 559, A128 (2013)

    Article  ADS  Google Scholar 

  27. X. Vinas, B.K. Sharma, C. Gonzales-Boquera, M. Centelles, Bulg. J. Phys. 44, S81 (2017)

    Google Scholar 

  28. T. Carreau, F. Gulminelli, N. Chamel, A.F. Fantina, J.M. Pearson, Astron. Astrophys. 635, A84 (2020)

    Article  ADS  Google Scholar 

  29. J.W. Negele, D. Vautherin, Nucl. Phys. A 207(2), 298 (1973). https://doi.org/10.1016/0375-9474(73)90349-7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.G., J.M. and R.S. are supported by CNRS Grant PICS-08294 VIPER (Nuclear Physics for Violent Phenomena in the Universe), the CNRS IEA-303083 BEOS project, the CNRS/IN2P3 NewMAC project, and benefit from PHAROS COST Action MP16214. S.R. is supported by Grant No. DE-FG02-00ER41132 from the Department of Energy, and the Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements), and PHY-1630782 (Network for Neutrinos, Nuclear Astrophysics, and Symmetries (N3AS)) from the National Science Foundation. This work is supported by the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon for its financial support within the program Investissements d’Avenir (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Margueron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grams, G., Margueron, J., Somasundaram, R. et al. Properties of Neutron Star Crust with Improved Nuclear Physics: Impact of Chiral EFT Interactions and Experimental Nuclear Masses. Few-Body Syst 62, 116 (2021). https://doi.org/10.1007/s00601-021-01697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01697-y

Navigation