Skip to main content
Log in

Spectrum of Light- and Heavy-Baryons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A symmetry-preserving truncation of the strong-interaction bound-state equations is used to calculate the spectrum of ground-state \(J=1/2^+\), \(3/2^+\) \((qq^\prime q^{\prime \prime })\)-baryons, where \(q, q^\prime , q^{\prime \prime } \in \{u,d,s,c,b\}\), their first positive-parity excitations and parity partners. Using two parameters, a description of the known spectrum of 39 such states is obtained, with a mean-absolute-relative-difference between calculation and experiment of 3.6(2.7)%. From this foundation, the framework is subsequently used to predict the masses of 90 states not yet seen empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Given this “doublet” structure, \(64+64=128\) independent scalar functions are required to completely describe a nucleon Faddeev amplitude: see Appendix B in Ref. [61] for more details.

  2. In all calculations herein, we employ a mass-independent momentum-subtraction renormalisation scheme for all relevant DSEs, implemented by making use of the scalar Ward–Green–Takahashi identity and fixing all renormalisation constants in the chiral limit [75], with renormalisation scale \(\zeta =19\,\)GeV\(=:\zeta _{19}\).

  3. We reiterate that the mass-scale in Eq. (14) makes no allowance for the effect of corrections to RL truncation on light-hadron observables. This issue is canvassed elsewhere [81], with the following conclusion: for systems in which orbital angular momentum does not play a big role, the impact of such corrections may largely be absorbed in a redefinition of this scale. With some revisions, we adapt this idea below to systems with angular momentum and to radial excitations.

  4. The formulation of this problem and efficient solution methods are detailed, e.g. in Ref. [61], Appendices A–C, and Ref. [68], Appendices A, B.

  5. As it was above, in all subsequent cases the sensitivity to \(\pm 10\)% variations of \(\omega \) in Eq. (14), with \(D\omega =\,\)constant, is uniformly \(\lesssim 1\)%. We therefore omit further mention of it hereafter.

  6. Notably, the mass of any given hadron is an integrated (long-wavelength) quantity; hence, not very sensitive to details of the system’s wave function. This feature plays a big role in the success of the ESR: so long as the centre-of-mass for each excitation-level is correctly set by the symmetry-preserving treatment of a broadly-sensible interaction, then a fair description of the spectrum should follow. Dynamical quantities that evolve with a probe’s momentum scale, e.g. elastic and transition form factors, are needed to expose a bound-state’s internal structure and so reveal details of the interaction which forms the composite system.

  7. Given current experimental data on the splittings between parity partners and radial excitations in systems with heavier quarks, one cannot be certain whether the interaction strength should be changed in s, c, b channels. Theoretically, on the other hand, if these observed splittings are driven by DCSB, as we believe, then the effects should diminish with increasing current-quark mass. In that case, within the accuracy of our approach, it is sensible to modify only the light-quark interaction strength.

References

  1. L.D. Faddeev, Scattering theory for a three particle system. Sov. Phys. JETP, 12, 1014–1019 (1961) [Zh. Eksp. Teor. Fiz. 39 (1960) 1459]

  2. R.T. Cahill, C.D. Roberts, J. Praschifka, Baryon structure and QCD. Austral. J. Phys. 42, 129–145 (1989)

    ADS  Google Scholar 

  3. C.J. Burden, R.T. Cahill, J. Praschifka, Baryon structure and QCD: nucleon calculations. Austral. J. Phys. 42, 147–159 (1989)

    ADS  Google Scholar 

  4. R.T. Cahill, Hadronization of QCD. Austral. J. Phys. 42, 171–186 (1989)

    ADS  Google Scholar 

  5. H. Reinhardt, Hadronization of quark flavor dynamics. Phys. Lett. B 244, 316–326 (1990)

    ADS  Google Scholar 

  6. G.V. Efimov, M.A. Ivanov, V.E. Lyubovitskij, Quark–diquark approximation of the three quark structure of baryons in the quark confinement model. Z. Phys. C 47, 583–594 (1990)

    ADS  Google Scholar 

  7. P.O. Bowman et al., Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004)

    ADS  Google Scholar 

  8. P. Boucaud, T. Brüntjen, J.P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J. Micheli, O. Pène, J. Rodríguez-Quintero, Is the QCD ghost dressing function finite at zero momentum? JHEP 06, 001 (2006)

    ADS  Google Scholar 

  9. P. Boucaud, J.P. Leroy, A. Le-Yaouanc, J. Micheli, O. Pene, J. Rodríguez-Quintero, The infrared behaviour of the pure Yang–Mills Green functions. Few Body Syst. 53, 387–436 (2012)

    ADS  Google Scholar 

  10. A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, J. Rodríguez-Quintero, Quark flavour effects on gluon and ghost propagators. Phys. Rev. D 86, 074512 (2012)

    ADS  Google Scholar 

  11. A. Aguilar, D. Binosi, J. Papavassiliou, Unquenching the gluon propagator with Schwinger–Dyson equations. Phys. Rev. D 86, 014032 (2012)

    ADS  Google Scholar 

  12. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Bridging a gap between continuum-QCD and ab initio predictions of hadron observables. Phys. Lett. B 742, 183–188 (2015)

    ADS  Google Scholar 

  13. A.C. Aguilar, D. Binosi, J. Papavassiliou, The gluon mass generation mechanism: a concise primer. Front. Phys. China 11, 111203 (2016)

    Google Scholar 

  14. D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Natural constraints on the gluon-quark vertex. Phys. Rev. D 95, 031501(R) (2017)

    ADS  Google Scholar 

  15. D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, Scale-setting, flavour dependence and chiral symmetry restoration. Phys. Rev. D 95, 114009 (2017)

    ADS  Google Scholar 

  16. D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Process-independent strong running coupling. Phys. Rev. D 96, 054026 (2017)

    ADS  Google Scholar 

  17. J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, Process-independent effective coupling. From QCD Green’s functions to phenomenology. Few Body Syst. 59, 121 (2018)

    ADS  Google Scholar 

  18. F. Gao, S.-X. Qin, C.D. Roberts, J. Rodriguez-Quintero, Locating the Gribov horizon. Phys. Rev. D 97, 034010 (2018)

    ADS  Google Scholar 

  19. K.D. Lane, Asymptotic freedom and Goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)

    ADS  Google Scholar 

  20. H.D. Politzer, Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397 (1976)

    ADS  Google Scholar 

  21. M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator. Phys. Rev. C 68, 015203 (2003)

    ADS  Google Scholar 

  22. P.O. Bowman et al., Unquenched quark propagator in Landau gauge. Phys. Rev. D 71, 054507 (2005)

    ADS  Google Scholar 

  23. M.S. Bhagwat, P.C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators. AIP Conf. Proc. 842, 225–227 (2006)

    ADS  Google Scholar 

  24. L. Chang, Y.-X. Liu, C.D. Roberts, Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)

    ADS  Google Scholar 

  25. H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)

    ADS  Google Scholar 

  26. A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem and diquark confinement beyond rainbow-ladder approximation. Phys. Lett. B 380, 7–12 (1996)

    ADS  Google Scholar 

  27. D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, C.D. Roberts, Symmetry preserving truncations of the gap and Bethe–Salpeter equations. Phys. Rev. D 93, 096010 (2016)

    ADS  Google Scholar 

  28. C.D. Roberts, A.G. Williams, Dyson–Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994)

    ADS  Google Scholar 

  29. L. Chang, C.D. Roberts, P.C. Tandy, Selected highlights from the study of mesons. Chin. J. Phys. 49, 955–1004 (2011)

    Google Scholar 

  30. A. Bashir et al., Collective perspective on advances in Dyson–Schwinger equation QCD. Commun. Theor. Phys. 58, 79–134 (2012)

    MATH  Google Scholar 

  31. C.D. Roberts, Three lectures on hadron physics. J. Phys. Conf. Ser. 706, 022003 (2016)

    Google Scholar 

  32. T. Horn, C.D. Roberts, The pion: an enigma within the standard model. J. Phys. G. 43, 073001 (2016)

    ADS  Google Scholar 

  33. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016)

    ADS  Google Scholar 

  34. V.D. Burkert, C.D. Roberts, Colloquium: Roper resonance: Toward a solution to the fifty year puzzle. Rev. Mod. Phys. 91, 011003 (2019)

  35. J. Segovia, C.D. Roberts, S.M. Schmidt, Understanding the nucleon as a Borromean bound-state. Phys. Lett. B 750, 100–106 (2015)

    ADS  Google Scholar 

  36. M.B. Hecht, C.D. Roberts, M. Oettel, A.W. Thomas, S.M. Schmidt, P.C. Tandy, Nucleon mass and pion loops. Phys. Rev. C 65, 055204 (2002)

    ADS  Google Scholar 

  37. R.T. Cahill, C.D. Roberts, J. Praschifka, Calculation of diquark masses in QCD. Phys. Rev. D 36, 2804 (1987)

    ADS  Google Scholar 

  38. P. Maris, Effective masses of diquarks. Few Body Syst. 32, 41–52 (2002)

    ADS  Google Scholar 

  39. Y. Bi, H. Cai, Y. Chen, M. Gong, Z. Liu, H.-X. Qiao, Y.-B. Yang, Diquark mass differences from unquenched lattice QCD. Chin. Phys. C 40, 073106 (2016)

    ADS  Google Scholar 

  40. M.S. Bhagwat, A. Höll, A. Krassnigg, C.D. Roberts, P.C. Tandy, Aspects and consequences of a dressed-quark-gluon vertex. Phys. Rev. C 70, 035205 (2004)

    ADS  Google Scholar 

  41. J. Segovia, I.C. Cloët, C.D. Roberts, S.M. Schmidt, Nucleon and \(\Delta \) elastic and transition form factors. Few Body Syst. 55, 1185–1222 (2014)

    ADS  Google Scholar 

  42. C.D. Roberts, Hadron physics and QCD: just the basic facts. J. Phys. Conf. Ser. 630, 012051 (2015)

    Google Scholar 

  43. J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. Roberts, S.-S. Xu, H.-S. Zong, Completing the picture of the Roper resonance. Phys. Rev. Lett. 115, 171801 (2015)

    ADS  Google Scholar 

  44. C.D. Roberts, N* structure and strong QCD. Few Body Syst. 59, 72 (2018)

    ADS  Google Scholar 

  45. J. Segovia, C.D. Roberts, Dissecting nucleon transition electromagnetic form factors. Phys. Rev. C 94, 042201(R) (2016)

    ADS  Google Scholar 

  46. C. Chen, Y. Lu, D. Binosi, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, Nucleon-to-Roper electromagnetic transition form factors at large-\(Q^2\). Phys. Rev. D 99, 034013 (2019)

    ADS  Google Scholar 

  47. G. Eichmann, Progress in the calculation of nucleon transition form factors. Few Body Syst. 57, 965–973 (2016)

    ADS  Google Scholar 

  48. G. Eichmann, More about the light baryon spectrum. Few Body Syst. 58, 81 (2017)

    ADS  Google Scholar 

  49. Y. Lu, C. Chen, C.D. Roberts, J. Segovia, S.-S. Xu, H.-S. Zong, Parity partners in the baryon resonance spectrum. Phys. Rev. C 96, 015208 (2017)

    ADS  Google Scholar 

  50. C. Chen, B. El-Bennich, C.D. Roberts, S.M. Schmidt, J. Segovia, S. Wan, Structure of the nucleon’s low-lying excitations. Phys. Rev. D 97, 034016 (2018)

    ADS  Google Scholar 

  51. C. Mezrag, J. Segovia, L. Chang, C.D. Roberts, Parton distribution amplitudes: revealing correlations within the proton and Roper. Phys. Lett. B 783, 263–267 (2018)

    ADS  Google Scholar 

  52. C. Chen, G. Krein, C.D. Roberts, S.M. Schmidt, J. Segovia, Spectrum and structure of octet and decuplet baryons and their positive-parity excitations. arXiv:1901.04305 [nucl-th]

  53. J. Segovia, Structure of the nucleon and its first radial excitation. Few Body Syst. (Special Issue dedicated to Ludwig Faddeev) (2019)

  54. V.I. Mokeev et al., New results from the studies of the \(N(1440)1/2^+\), \(N(1520)3/2^-\), and \(\Delta (1620)1/2^-\) resonances in exclusive \(ep \rightarrow e^{\prime }p^{\prime } \pi ^+ \pi ^-\) electroproduction with the CLAS detector. Phys. Rev. C 93, 025206 (2016)

    ADS  Google Scholar 

  55. V.I. Mokeev, Nucleon resonance structure from exclusive meson electroproduction with CLAS. Few Body Syst. 59, 46 (2018)

    Google Scholar 

  56. A.V. Anisovich et al., Strong evidence for nucleon resonances near 1900 MeV. Phys. Rev. Lett. 119, 062004 (2017)

    ADS  Google Scholar 

  57. M. Ripani et al., Measurement of \(e p \rightarrow e^\prime p \pi ^+ \pi ^-\) and baryon resonance analysis. Phys. Rev. Lett. 91, 022002 (2003)

    ADS  Google Scholar 

  58. V.I. Mokeev, I. Aznauryan, V. Burkert, R. Gothe, Recent results on the nucleon resonance spectrum and structure from the CLAS detector. EPJ Web Conf. 113, 01013 (2016)

    Google Scholar 

  59. E. Golovatch et al., First results on nucleon resonance photocouplings from the \(\gamma p \rightarrow \pi ^+\pi ^-p\) reaction. Phys. Lett. B 788, 371–379 (2019)

    ADS  Google Scholar 

  60. G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus, Nucleon mass from a covariant three-quark Faddeev equation. Phys. Rev. Lett. 104, 201601 (2010)

    ADS  Google Scholar 

  61. G. Eichmann, Nucleon electromagnetic form factors from the covariant Faddeev equation. Phys. Rev. D 84, 014014 (2011)

    ADS  Google Scholar 

  62. H. Sanchis-Alepuz, G. Eichmann, S. Villalba-Chavez, R. Alkofer, Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D 84, 096003 (2011)

    ADS  Google Scholar 

  63. G. Eichmann, C.S. Fischer, Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation. Eur. Phys. J. A 48, 9 (2012)

    ADS  Google Scholar 

  64. H. Sanchis-Alepuz, C.S. Fischer, Octet and Decuplet masses: a covariant three-body Faddeev calculation. Phys. Rev. D 90, 096001 (2014)

    ADS  Google Scholar 

  65. H. Sanchis-Alepuz, C.S. Fischer, Hyperon elastic electromagnetic form factors in the space-like momentum region. Eur. Phys. J. A 52, 34 (2016)

    ADS  Google Scholar 

  66. G. Eichmann, C.S. Fischer, H. Sanchis-Alepuz, Light baryons and their excitations. Phys. Rev. D 94, 094033 (2016)

    ADS  Google Scholar 

  67. H. Sanchis-Alepuz, R. Alkofer, C.S. Fischer, Electromagnetic transition form factors of baryons in the space-like momentum region. Eur. Phys. J. A 54, 41 (2018)

    ADS  Google Scholar 

  68. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons. Phys. Rev. D 97, 114017 (2018)

    ADS  Google Scholar 

  69. Q.-W. Wang, S.-X. Qin, C.D. Roberts, S.M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation. Phys. Rev. D 98, 054019 (2018)

    ADS  Google Scholar 

  70. J.C. Ward, An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950)

    ADS  MATH  Google Scholar 

  71. H.S. Green, A pre-renormalized quantum electrodynamics. Proc. Phys. Soc. A 66, 873–880 (1953)

    ADS  MATH  Google Scholar 

  72. Y. Takahashi, On the generalized Ward identity. Nuovo Cim. 6, 371–375 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  73. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Interaction model for the gap equation. Phys. Rev. C 84, 042202(R) (2011)

    ADS  Google Scholar 

  74. S.-X. Qin, L. Chang, Y.-X. Liu, C.D. Roberts, D.J. Wilson, Commentary on rainbow-ladder truncation for excited states and exotics. Phys. Rev. C 85, 035202 (2012)

    ADS  Google Scholar 

  75. L. Chang, Y.-X. Liu, C.D. Roberts, Y.-M. Shi, W.-M. Sun, H.-S. Zong, Chiral susceptibility and the scalar Ward identity. Phys. Rev. C 79, 035209 (2009)

    ADS  Google Scholar 

  76. M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-dependence of pseudoscalar meson elastic form factors. Phys. Rev. D 98, 091505(R) (2018)

    ADS  Google Scholar 

  77. G. Eichmann, I.C. Cloët, R. Alkofer, A. Krassnigg, C.D. Roberts, Toward unifying the description of meson and baryon properties. Phys. Rev. C 79, 012202(R) (2009)

    ADS  Google Scholar 

  78. G. Eichmann, From quarks and gluons to baryon form factors. Prog. Part. Nucl. Phys. 67, 234–238 (2012)

    ADS  Google Scholar 

  79. L. Chang, C.D. Roberts, Sketching the Bethe–Salpeter kernel. Phys. Rev. Lett. 103, 081601 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  80. L. Chang, C.D. Roberts, Tracing masses of ground-state light-quark mesons. Phys. Rev. C 85, 052201(R) (2012)

    ADS  Google Scholar 

  81. G. Eichmann, R. Alkofer, I.C. Cloët, A. Krassnigg, C.D. Roberts, Perspective on rainbow-ladder truncation. Phys. Rev. C 77, 042202(R) (2008)

    ADS  Google Scholar 

  82. T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Spectra of heavy quarkonia in a Bethe–Salpeter-equation approach. Phys. Rev. D 91, 034013 (2015)

    ADS  Google Scholar 

  83. M. Ding, F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia. Phys. Lett. B 753, 330–335 (2016)

    ADS  Google Scholar 

  84. M. Gómez-Rocha, T. Hilger, A. Krassnigg, Effects of a dressed quark-gluon vertex in vector heavy-light mesons and theory average of the \(B_c^*\) meson mass. Phys. Rev. D 93, 074010 (2016)

    ADS  Google Scholar 

  85. J. Chen, M. Ding, L. Chang, Y.-X. Liu, Two photon transition form factor of \(\bar{c}c \) quarkonia. Phys. Rev. D 95, 016010 (2017)

    ADS  Google Scholar 

  86. T. Hilger, M. Gómez-Rocha, A. Krassnigg, W. Lucha, Aspects of open-flavour mesons in a comprehensive DSBSE study. Eur. Phys. J. A 53, 213 (2017)

    ADS  Google Scholar 

  87. D. Binosi, L. Chang, M. Ding, F. Gao, J. Papavassiliou, C.D. Roberts, Distribution amplitudes of heavy-light mesons. Phys. Lett. B 790, 257–262 (2019)

    ADS  Google Scholar 

  88. P. Maris, C.D. Roberts, \(\pi \) and \(K\) meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369–3383 (1997)

    ADS  Google Scholar 

  89. A. Krassnigg, Excited mesons in a Bethe–Salpeter approach. PoS, CONFINEMENT8, 075 (2008)

  90. M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018)

    ADS  Google Scholar 

  91. C.D. Roberts, R.T. Cahill, J. Praschifka, QCD and a calculation of the \(\omega \)-\(\rho \) mass splitting. Int. J. Mod. Phys. A 4, 719 (1989)

    ADS  Google Scholar 

  92. L.C. Hollenberg, C.D. Roberts, B.H. McKellar, Two loop calculation of the \(\omega \)-\(\rho \) mass splitting. Phys. Rev. C 46, 2057–2065 (1992)

    ADS  Google Scholar 

  93. M.A. Pichowsky, S. Walawalkar, S. Capstick, Meson-loop contributions to the \(\rho \) \(\omega \) mass splitting and \(\rho \) charge radius. Phys. Rev. D 60, 054030 (1999)

    ADS  Google Scholar 

  94. S. Okubo, Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27, 949–966 (1962)

    ADS  MATH  Google Scholar 

  95. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev., 125, 1067–1084 (1962), see also “The eightfold way: a theory of strong interaction symmetry. DOE Technical Report TID-12608 (1961)

  96. S. Durr et al., Ab-initio determination of light hadron masses. Science 322, 1224–1227 (2008)

    ADS  Google Scholar 

  97. P. Maris, C.D. Roberts, S.M. Schmidt, P.C. Tandy, T-dependence of pseudoscalar and scalar correlations. Phys. Rev. C 63, 025202 (2001)

    ADS  Google Scholar 

  98. K.-L. Wang, Y.-X. Liu, L. Chang, C.D. Roberts, S.M. Schmidt, Baryon and meson screening masses. Phys. Rev. D 87, 074038 (2013)

    ADS  Google Scholar 

  99. M. Cheng et al., Meson screening masses from lattice QCD with two light and the strange quark. Eur. Phys. J. C 71, 1564 (2011)

    ADS  Google Scholar 

  100. G. Aarts, C. Allton, D. De Boni, S. Hands, B. Jäger, C. Praki, J.-I. Skullerud, Light baryons below and above the deconfinement transition: medium effects and parity doubling. JHEP 06, 034 (2017)

    ADS  Google Scholar 

  101. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons. Phys. Rev. Lett. 18, 507–509 (1967)

    ADS  Google Scholar 

  102. C.D. Roberts, Perspective on the origin of hadron masses. Few Body Syst. 58, 5 (2017)

    ADS  Google Scholar 

  103. P. Maris, P.C. Tandy, Bethe–Salpeter study of vector meson masses and decay constants. Phys. Rev. C 60, 055214 (1999)

    ADS  Google Scholar 

  104. L. Chang, Y.-X. Liu, W.-M. Sun, H.-S. Zong, Revisiting the vector and axial-vector vacuum susceptibilities. Phys. Lett. B 669, 327–330 (2008)

    ADS  Google Scholar 

  105. H.L.L. Roberts, L. Chang, I.C. Cloët, C.D. Roberts, Masses of ground and excited-state hadrons. Few Body Syst. 51, 1–25 (2011)

    ADS  Google Scholar 

  106. C. Chen, L. Chang, C.D. Roberts, S.-L. Wan, D.J. Wilson, Spectrum of hadrons with strangeness. Few Body Syst. 53, 293–326 (2012)

    ADS  Google Scholar 

  107. J.C.R. Bloch, YuL Kalinovsky, C.D. Roberts, S.M. Schmidt, Describing a(1) and b(1) decays. Phys. Rev. D 60, 111502 (1999)

    ADS  Google Scholar 

  108. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, S.M. Schmidt, Parton distribution amplitudes of light vector mesons. Phys. Rev. D 90, 014011 (2014)

    ADS  Google Scholar 

  109. S.-X. Qin, Comments on formulating meson bound-state equations beyond rainbow-ladder approximation. Few Body Syst. 57, 1059–1065 (2016)

    ADS  Google Scholar 

  110. R. Williams, C.S. Fischer, W. Heupel, Light mesons in QCD and unquenching effects from the 3PI effective action. Phys. Rev. D 93, 034026 (2016)

    ADS  Google Scholar 

  111. Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Charmed bottom baryon spectroscopy from lattice QCD. Phys. Rev. D 90, 094507 (2014)

    ADS  Google Scholar 

  112. N. Isgur, G. Karl, P wave baryons in the quark model. Phys. Rev. D 18, 4187 (1978)

    ADS  Google Scholar 

  113. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964)

    ADS  Google Scholar 

  114. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Parts 1 and 2 (CERN Reports No. 8182/TH. 401 and No. 8419/TH. 412) (1964)

  115. L.D. Roper, Evidence for a P-11 pion-nucleon resonance at 556 MeV. Phys. Rev. Lett. 12, 340–342 (1964)

    ADS  Google Scholar 

  116. P. Bareyre, C. Bricman, G. Valladas, G. Villet, J. Bizard, J. Seguinot, Pion-nucleon interactions between Tlab = 300 and Tlab = 700 MeV. Phys. Lett. 8, 137–141 (1964)

    ADS  Google Scholar 

  117. P. Auvil, C. Lovelace, A. Donnachie, A. Lea, Pion-nucleon phase shifts and resonances. Phys. Lett. 12, 76–80 (1964)

    ADS  Google Scholar 

  118. S.L. Adelman, Evidence for an \({N}^{*}\) resonance at 1425 MeV. Phys. Rev. Lett. 13, 555–557 (1964)

    ADS  Google Scholar 

  119. L.D. Roper, R.M. Wright, B.T. Feld, Energy-dependent pion-nucleon phase-shift analysis. Phys. Rev. 138, B190–B210 (1965)

    ADS  Google Scholar 

  120. A. Höll, A. Krassnigg, C.D. Roberts, Pseudoscalar meson radial excitations. Phys. Rev. C 70, 042203(R) (2004)

    ADS  Google Scholar 

  121. B.L. Li, L. Chang, F. Gao, C.D. Roberts, S.M. Schmidt, H.S. Zong, Distribution amplitudes of radially-excited \(\pi \) and K mesons. Phys. Rev. D 93, 114033 (2016)

    ADS  Google Scholar 

  122. B.-L. Li, L. Chang, M. Ding, C.D. Roberts, H.-S. Zong, Leading-twist distribution amplitudes of scalar- and vector-mesons. Phys. Rev. D 94, 094014 (2016)

    ADS  Google Scholar 

  123. L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for constructive comments and encouragement from L. Chang, C. Chen, Z.-F. Cui, R. Gothe, V. Mokeev, J. Segovia, S.-S. Xu and P.-L. Yin; and for the hospitality of RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany. Work supported by: National Natural Science Foundation of China (NSFC) under Grant Nos. 11805024 and 11847301. Fundamental Research Funds for the Central Universities (China) under Grant No. 2019CDJDWL0005; Jiangsu Province Hundred Talents Plan for Professionals; U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357; and Forschungszentrum Jülich GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Roberts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial Issue”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, SX., Roberts, C.D. & Schmidt, S.M. Spectrum of Light- and Heavy-Baryons. Few-Body Syst 60, 26 (2019). https://doi.org/10.1007/s00601-019-1488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1488-x

Navigation