Skip to main content
Log in

Process-Independent Effective Coupling: From QCD Green’s Functions to Phenomenology

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

This article reports on a very recent proposal for a new type of process-independent QCD effective charge (Binosi et al. in Phys Rev D 96(5):054026, 2017. https://doi.org/10.1103/PhysRevD.96.054026) defined, as an anologue of the Gell-Mann-Low effective charge in QCD, on the ground of nothing but the knowledge of the gauge-field two-point Green’s function, albeit modified within a particular computational framework; namely, the combination of pinch technique and background field method which makes possible a systematic rearranging of classes of diagrams in order to redefine the Green’s function and have them obey linear QED-like Slavnov–Taylor identities. We have here calculated that effective charge, shown how strikingly well it compares to a process-dependent effective charge based on the Bjorken sum rule; and, finally, employed it in an exploratory calculation of the proton electromagnetic form factor in the hard scattering regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodriguez-Quintero, Phys. Rev. D 96(5), 054026 (2017). https://doi.org/10.1103/PhysRevD.96.054026

    Article  ADS  Google Scholar 

  2. J.C. Ward, Phys. Rev. 78, 182 (1950). https://doi.org/10.1103/PhysRev.78.182

    Article  ADS  Google Scholar 

  3. W.J. Marciano, H. Pagels, Nature 279, 479 (1979). https://doi.org/10.1038/279479a0

    Article  ADS  Google Scholar 

  4. C. Becchi, A. Rouet, R. Stora, Ann. Phys. 98, 287 (1976). https://doi.org/10.1016/0003-4916(76)90156-1

    Article  ADS  Google Scholar 

  5. I.V. Tyutin, (1975)

  6. J. Taylor, Nucl. Phys. B 33, 436 (1971). https://doi.org/10.1016/0550-3213(71)90297-5

    Article  ADS  Google Scholar 

  7. A. Slavnov, Theor. Math. Phys. 10, 99 (1972). https://doi.org/10.1007/BF01090719

    Article  Google Scholar 

  8. A. Cucchieri, T. Mendes, PoS LAT2007, 297 (2007)

    Google Scholar 

  9. A. Cucchieri, T. Mendes, Phys. Rev. Lett. 100, 241601 (2008). https://doi.org/10.1103/PhysRevLett.100.241601

    Article  ADS  MathSciNet  Google Scholar 

  10. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78, 025010 (2008). https://doi.org/10.1103/PhysRevD.78.025010

    Article  ADS  Google Scholar 

  11. P. Boucaud, J. Leroy, A. Le Yaouanc, J. Micheli, O. Pène et al., JHEP 0806, 099 (2008). https://doi.org/10.1088/1126-6708/2008/06/099

    Article  ADS  Google Scholar 

  12. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Verschelde, Phys. Rev. D 78, 065047 (2008). https://doi.org/10.1103/PhysRevD.78.065047

    Article  ADS  Google Scholar 

  13. I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys. Lett. B 676, 69 (2009). https://doi.org/10.1016/j.physletb.2009.04.076

    Article  ADS  Google Scholar 

  14. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 86, 014032 (2012). https://doi.org/10.1103/PhysRevD.86.014032

    Article  ADS  Google Scholar 

  15. M. Bhagwat, M. Pichowsky, C. Roberts, P. Tandy, Phys. Rev. C 68, 015203 (2003). https://doi.org/10.1103/PhysRevC.68.015203

    Article  ADS  Google Scholar 

  16. P.O. Bowman, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A.G. Williams et al., Phys. Rev. D 71, 054507 (2005). https://doi.org/10.1103/PhysRevD.71.054507

    Article  ADS  Google Scholar 

  17. M. Bhagwat, P. Tandy, AIP Conf. Proc. 842, 225 (2006). https://doi.org/10.1063/1.2220232

    Article  ADS  Google Scholar 

  18. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982). https://doi.org/10.1103/PhysRevD.26.1453

    Article  ADS  Google Scholar 

  19. J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40, 3474 (1989). https://doi.org/10.1103/PhysRevD.40.3474

    Article  ADS  Google Scholar 

  20. A. Pilaftsis, Nucl. Phys. B 487, 467 (1997). https://doi.org/10.1016/S0550-3213(96)00686-4

    Article  ADS  Google Scholar 

  21. D. Binosi, J. Papavassiliou, Phys. Rev. D 66, 111901 (2002). https://doi.org/10.1103/PhysRevD.66.111901

    Article  ADS  Google Scholar 

  22. D. Binosi, J. Papavassiliou, J. Phys. G30, 203 (2004). https://doi.org/10.1088/0954-3899/30/2/017

    Article  ADS  Google Scholar 

  23. D. Binosi, J. Papavassiliou, Phys. Rep. 479, 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.001.245pages,92figures

    Article  ADS  MathSciNet  Google Scholar 

  24. L.F. Abbott, Nucl. Phys. B 185, 189 (1981). https://doi.org/10.1016/0550-3213(81)90371-0

    Article  ADS  Google Scholar 

  25. L.F. Abbott, Acta Phys. Pol. B 13, 33 (1982)

    Google Scholar 

  26. A.C. Aguilar, D. Binosi, J. Papavassiliou, J. Rodriguez-Quintero, Phys. Rev. D 80, 085018 (2009). https://doi.org/10.1103/PhysRevD.80.085018

    Article  ADS  Google Scholar 

  27. B. Blossier, P. Boucaud, M. Brinet, F. De Soto, X. Du et al., Phys. Rev. D 85, 034503 (2012). https://doi.org/10.1103/PhysRevD.85.034503

    Article  ADS  Google Scholar 

  28. B. Blossier, P. Boucaud, M. Brinet, F. De Soto, X. Du, V. Morenas, O. Pene, K. Petrov, J. Rodriguez-Quintero, Phys. Rev. Lett. 108, 262002 (2012). https://doi.org/10.1103/PhysRevLett.108.262002

    Article  ADS  Google Scholar 

  29. B. Blossier et al., Phys. Rev. D 89, 014507 (2014). https://doi.org/10.1103/PhysRevD.89.014507

    Article  ADS  Google Scholar 

  30. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B 742, 183 (2015). https://doi.org/10.1016/j.physletb.2015.01.031

    Article  ADS  Google Scholar 

  31. D. Binosi, C.D. Roberts, J. Rodriguez-Quintero, Phys. Rev. D 95(11), 114009 (2017). https://doi.org/10.1103/PhysRevD.95.114009

    Article  ADS  Google Scholar 

  32. F. Gao, S.X. Qin, C.D. Roberts, J. Rodriguez-Quintero (2017)

  33. D. Binosi, L. Chang, J. Papavassiliou, S.X. Qin, C.D. Roberts, Phys. Rev. D 95(3), 031501 (2017). https://doi.org/10.1103/PhysRevD.95.031501

    Article  ADS  Google Scholar 

  34. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972). [Yad. Fiz.15,781(1972)]

    Google Scholar 

  35. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977). https://doi.org/10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  36. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977). [Zh. Eksp. Teor. Fiz.73,1216(1977)]

    ADS  Google Scholar 

  37. A. Deur, V. Burkert, J.P. Chen, W. Korsch, Phys. Lett. B 650, 244 (2007). https://doi.org/10.1016/j.physletb.2007.05.015

    Article  ADS  Google Scholar 

  38. A. Deur, V. Burkert, J.P. Chen, W. Korsch, Phys. Lett. B 665, 349 (2008). https://doi.org/10.1016/j.physletb.2008.06.049

    Article  ADS  Google Scholar 

  39. A. Deur, S.J. Brodsky, G.F. de Teramond, Prog. Part. Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003

    Article  ADS  Google Scholar 

  40. A.C. Aguilar, D. Binosi, D. Ibaez, J. Papavassiliou, Phys. Rev. D 89(8), 085008 (2014). https://doi.org/10.1103/PhysRevD.89.085008

    Article  ADS  Google Scholar 

  41. M. Tissier, N. Wschebor (2011)

  42. M. Pelaez, M. Tissier, N. Wschebor, Phys. Rev. D 88, 125003 (2013). https://doi.org/10.1103/PhysRevD.88.125003

    Article  ADS  Google Scholar 

  43. A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodriguez-Quintero, S. Zafeiropoulos, Phys. Lett. B 761, 444 (2016). https://doi.org/10.1016/j.physletb.2016.08.065

    Article  ADS  Google Scholar 

  44. P. Boucaud, F. De Soto, J. Rodrguez-Quintero, S. Zafeiropoulos, Phys. Rev. D 95(11), 114503 (2017). https://doi.org/10.1103/PhysRevD.95.114503

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Blum, M.Q. Huber, M. Mitter, L. von Smekal, Phys. Rev. D 89, 061703 (2014). https://doi.org/10.1103/PhysRevD.89.061703

    Article  ADS  Google Scholar 

  46. G. Eichmann, R. Williams, R. Alkofer, M. Vujinovic, Phys. Rev. D 89(10), 105014 (2014). https://doi.org/10.1103/PhysRevD.89.105014

    Article  ADS  Google Scholar 

  47. A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski, N. Strodthoff, Phys. Rev. D 94(5), 054005 (2016). https://doi.org/10.1103/PhysRevD.94.054005

    Article  ADS  Google Scholar 

  48. G. Grunberg, Phys. Rev. D 29, 2315 (1984). https://doi.org/10.1103/PhysRevD.29.2315

    Article  ADS  Google Scholar 

  49. J.D. Bjorken, Phys. Rev. 148, 1467 (1966). https://doi.org/10.1103/PhysRev.148.1467

    Article  ADS  Google Scholar 

  50. J.D. Bjorken, Phys. Rev. D 1, 1376 (1970). https://doi.org/10.1103/PhysRevD.1.1376

    Article  ADS  Google Scholar 

  51. C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655 (2013). https://doi.org/10.1103/RevModPhys.85.655

    Article  ADS  Google Scholar 

  52. C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  53. A.L. Kataev, Phys. Rev. D 50, R5469 (1994). https://doi.org/10.1103/PhysRevD.50.R5469

    Article  ADS  Google Scholar 

  54. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 104, 132004 (2010). https://doi.org/10.1103/PhysRevLett.104.132004

    Article  ADS  Google Scholar 

  55. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980). https://doi.org/10.1103/PhysRevD.22.2157

    Article  ADS  Google Scholar 

  56. V.L. Chernyak, I.R. Zhitnitsky, Nucl. Phys. B 246, 52 (1984). https://doi.org/10.1016/0550-3213(84)90114-7

    Article  ADS  Google Scholar 

  57. C.R. Ji, A.F. Sill, R.M. Lombard, Phys. Rev. D 36, 165 (1987). https://doi.org/10.1103/PhysRevD.36.165

    Article  ADS  Google Scholar 

  58. C. Mezrag, J. Segovia, L. Chang, C.D. Roberts (2017)

Download references

Acknowledgements

We are grateful for comments from S. J. Brodsky, L. Chang, A. Deur and S.-X. Qin. This study was conceived and initiated during the 3rd Workshop on Non-perturbative QCD, University of Seville, Spain, 17–21 October 2016. This research was supported by: Spanish MINECO, under grants FPA2014-53631-C-1-P, FPA2014-53631-C-2-P, FPA2017-86380-P and SEV-2014-0398; Generalitat Valenciana under grant Prometeo II/2014/066; and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Rodríguez-Quintero.

Additional information

This article belongs to the Topical Collection “NSTAR 2017 - The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Quintero, J., Binosi, D., Mezrag, C. et al. Process-Independent Effective Coupling: From QCD Green’s Functions to Phenomenology. Few-Body Syst 59, 121 (2018). https://doi.org/10.1007/s00601-018-1437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1437-0

Navigation