Skip to main content
Log in

Description of Five-Nucleon Systems Using Faddeev-Yakubovsky Equations

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

A brief overview of Faddeev-Yakubovsky equations is presented before deriving 5-body ones. Numerical formalism, enabling to solve these equations in configuration space for a system of five nucleons is described. Microscopic calculations are realized to determine phaseshifts of low energy neutron scattering on \(^4\)He and \(1/2^+\) resonance position of \(^5\)H, employing phenomenological MT I-III potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961)

    Google Scholar 

  2. O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)

    Google Scholar 

  3. H. Kamada, S. Oryu, Few-Body Syst. 12(2), 201 (1992). https://doi.org/10.1007/BF01074816

    Article  ADS  Google Scholar 

  4. D. Baye, Phys. Rep. 565, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Lazauskas, Scattering of heavy charged particles in atomic and nuclear systems. Ph.D. thesis, Université Joseph Fourier, Grenoble (2003). https://hal.archives-ouvertes.fr/tel-00004178

  6. R. Lazauskas, arXiv:1711.04716 (2017)

  7. R. Malfliet, J. Tjon, Nucl. Phys. A 127(1), 161 (1969). https://doi.org/10.1016/0375-9474(69)90775-1

    Article  ADS  Google Scholar 

  8. A. Kievsky, M. Viviani, P. Barletta, C. Romero-Redondo, E. Garrido, Phys. Rev. C 81, 034002 (2010). https://doi.org/10.1103/PhysRevC.81.034002

  9. A. Csótó, G.M. Hale, Phys. Rev. C 55, 536 (1997). https://doi.org/10.1103/PhysRevC.55.536

  10. P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Physica Scripta 91(5), 053002 (2016). http://stacks.iop.org/1402-4896/91/i=5/a=053002

  11. K.M. Nollett, S.C. Pieper, R.B. Wiringa, J. Carlson, G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007). https://doi.org/10.1103/PhysRevLett.99.022502

  12. R. Lazauskas, J. Carbonell, Phys. Rev. C 72, 034003 (2005). https://doi.org/10.1103/PhysRevC.72.034003

  13. E. Hiyama, R. Lazauskas, J. Carbonell, M. Kamimura, Phys. Rev. C 93, 044004 (2016). https://doi.org/10.1103/PhysRevC.93.044004

  14. A.M. Shirokov, G. Papadimitriou, A.I. Mazur, I.A. Mazur, R. Roth, J.P. Vary, Phys. Rev. Lett. 117, 182502 (2016). https://doi.org/10.1103/PhysRevLett.117.182502. https://link.aps.org/doi/10.1103/PhysRevLett.117.182502

  15. K. Fossez, J. Rotureau, N. Michel, M. Płoszajczak, Phys. Rev. Lett. 119, 032501 (2017). https://doi.org/10.1103/PhysRevLett.119.032501. https://link.aps.org/doi/10.1103/PhysRevLett.119.032501

  16. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata, M. Kobayashi, Y. Kondo, T. Kubo, Y. Kubota, M. Kurata-Nishimura, C.S. Lee, Y. Maeda, H. Matsubara, K. Miki, T. Nishi, S. Noji, S. Sakaguchi, H. Sakai, Y. Sasamoto, M. Sasano, H. Sato, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, A. Tamii, L. Tang, H. Tokieda, M. Tsumura, T. Uesaka, K. Yako, Y. Yanagisawa, R. Yokoyama, K. Yoshida, Phys. Rev. Lett. 116, 052501 (2016). https://doi.org/10.1103/PhysRevLett.116.052501

    Article  ADS  Google Scholar 

  17. A.H. Wuosmaa, S. Bedoor, K.W. Brown, W.W. Buhro, Z. Chajecki, R.J. Charity, W.G. Lynch, J. Manfredi, S.T. Marley, D.G. McNeel, A.S. Newton, D.V. Shetty, R.H. Showalter, L.G. Sobotka, M.B. Tsang, J.R. Winkelbauer, R.B. Wiringa, Phys. Rev. C 95, 014310 (2017). https://doi.org/10.1103/PhysRevC.95.014310

  18. K. Arai, Phys. Rev. C 68, 034303 (2003). https://doi.org/10.1103/PhysRevC.68.034303

  19. A. Adahchour, P. Descouvemont, Nuclear Physics A 813(3), 252 (2008). https://doi.org/10.1016/j.nuclphysa.2008.09.008. http://www.sciencedirect.com/science/article/pii/S037594740800715X

  20. S. Aoyama, N. Itagaki, Nuclear Physics A 738, 362 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.062. http://www.sciencedirect.com/science/article/pii/S0375947404006037. Proceedings of the 8th International Conference on Clustering Aspects of Nuclear Structure and Dynamics

  21. P. Descouvemont, A. Kharbach, Phys. Rev. C 63, 027001 (2001). https://doi.org/10.1103/PhysRevC.63.027001

  22. J. Broeckhove, F. Arickx, P. Hellinckx, V.S. Vasilevsky, A.V. Nesterov, Journal of Physics G: Nuclear and Particle Physics 34(9), 1955 (2007). http://stacks.iop.org/0954-3899/34/i=9/a=008

  23. L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A–Hadrons Nuclei 19(2), 187 (2004). https://doi.org/10.1140/epja/i2003-10124-1

    Article  ADS  Google Scholar 

  24. R. de Diego, E. Garrido, D. Fedorov, A. Jensen, Nuclear Physics A 786(1), 71 (2007). https://doi.org/10.1016/j.nuclphysa.2007.02.002. http://www.sciencedirect.com/science/article/pii/S0375947407001650

  25. V. Kukulin, V. Krasnopolsky, J. Phys. A10, L33 (1977). https://doi.org/10.1088/0305-4470/10/2/002

    ADS  Google Scholar 

  26. V.I. Kukulin, V.M. Krasnopolsky, J. Horácek, Theory of Resonances (Kluwer, Dordrecht, 1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rimantas Lazauskas.

Additional information

This article belongs to the Topical Collection “Critical Stability of Quantum Few-Body Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazauskas, R. Description of Five-Nucleon Systems Using Faddeev-Yakubovsky Equations. Few-Body Syst 59, 13 (2018). https://doi.org/10.1007/s00601-018-1333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1333-7

Navigation