Skip to main content
Log in

Tunneling of Atoms, Nuclei and Molecules

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyle F.: On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. 1, 121 (1954)

    Article  ADS  Google Scholar 

  2. Gamow G.: Zur Quantentheorie des Atomkernes. Z. Physik 51, 204 (1928)

    Article  ADS  MATH  Google Scholar 

  3. Gurney R.W., Condon E.U.: Quantum mechanics and radioactive disintegration. Nature 122, 439 (1928)

    Article  ADS  MATH  Google Scholar 

  4. Esaki, L.: Long journey into tunneling. Nobel Lecture (1973)

  5. Binnig, G., Rohrer, H.:Scanning tunneling microscopy. IBM J. Res. Dev. 30, 4 (1986)

  6. Bertulani, C.A.: International Conference Fusion11—Summary Talk. Saint Malo, France, May 2–6, 2011, Eur. Phys. J. Conf. Ser. 17, 15001 (2011)

  7. Varga R.S.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  8. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  9. Stetcu I., Bertulani C., Bulgac A., Magierski P., Roche K.J.: Relativistic Coulomb excitation within time dependent superfluid local density approximation. Phys. Rev. Lett. 114, 012701 (2015)

    Article  ADS  Google Scholar 

  10. Tuckerman M.E., Berne B.J., Rossi A.: Molecullar dynamics algorithm for multiple time scales: systems with disparate masses. J. Chem. Phys. 94, 1465 (1991)

    Article  ADS  Google Scholar 

  11. Park H.S., Liu W.K.: An introduction and tutorial on multiple-scale analysis in solids. Comput. Methods Appl. Mech. Eng. 193, 1733 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. J. Phys. Condens. Matter 6, 3759 (1994)

    Article  ADS  Google Scholar 

  13. Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. Phys. Rev. B 51, 5453 (1995)

    Article  ADS  Google Scholar 

  14. Saito N., Kayanuma Y.: Resonant tunnelling of a composite particle through a single potential barrier. Europhys. Lett. 60, 331 (2002)

    Article  ADS  Google Scholar 

  15. Bacca S., Feldmeier H.: Resonant tunneling in a schematic model. Phys. Rev. C 73, 054608 (2006)

    Article  ADS  Google Scholar 

  16. Bertulani C.A., Flambaum V.V., Zelevinsky V.G.: Tunneling of a composite particle: effects of intrinsic structure. J. Phys. G 34, 2289 (2007)

    Article  ADS  Google Scholar 

  17. Goodvin G.L., Shegelski M.R.: Tunneling of a diatomic molecule incident upon a potential barrier. Phys. Rev. A 71, 032719 (2005)

    Article  ADS  Google Scholar 

  18. Goodvin G.L., Shegelski M.R.: Tunneling of a diatomic molecule incident upon a potential barrier. Phys. Rev. A 72, 042713 (2005)

    Article  ADS  Google Scholar 

  19. Canto L.F., Donangelo R., Lotti P., Hussein M.S.: Effect of Coulomb dipole polarizability of halo nuclei on their near-barrier fusion with heavy targets. Phys. Rev. C 52, R2848 (1995)

    Article  ADS  Google Scholar 

  20. Takigawa N., Kuratani M., Sagawa H.: Effect of breakup reactions on the fusion of a halo nucleus. Phys. Rev. C 47, R2470 (1993)

    Article  ADS  Google Scholar 

  21. Hussein M.S., Pato M.P., Canto L.F., Donangelo R.: Near-barrier fusion of Li11 with heavy spherical and deformed targets. Phys. Rev. C 46, 377 (1992)

    Article  ADS  Google Scholar 

  22. Hussein M.S., Pato M.P., Canto L.F., Donangelo R.: Real part of the polarization potential for induced11 fusion reactions. Phys. Rev. C 47, 2398 (1993)

    Article  ADS  Google Scholar 

  23. Dasso C., Vitturi A.: Does the presence of Li11 breakup channels reduce the cross section for fusion processes?. Phys. Rev. C 50, R12 (1995)

    Article  ADS  Google Scholar 

  24. Lemasson A. et al.: Modern Rutherford experiment: tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009)

    Article  ADS  Google Scholar 

  25. Ahsan N., Volya A.: Quantum tunneling and scattering of a composite object reexamined. Phys. Rev. C 82, 064607 (2010)

    Article  ADS  Google Scholar 

  26. Shotter A.C., Shotter M.D.: Quantum mechanical tunneling of composite particle systems: linkage to sub-barrier nuclear reactions. Phys. Rev. C 83, 054621 (2011)

    Article  ADS  Google Scholar 

  27. Canto L.F., Gomes P.R.S., Donangelo R., Hussein M.S.: Fusion and breakup of weakly bound nuclei. Phys. Rep. 424, 1 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. Landauer R., Martin T.: Barrier interaction time in tunneling. Rev. Mod. Phys. 66, 217 (1994)

    Article  ADS  Google Scholar 

  29. Kasagi J. et al.: Barrier interaction time in tunneling. Phys. Rev. Lett. 79, 371 (1997)

    Article  ADS  Google Scholar 

  30. Bertulani C.A., de Paula D.T., Zelevinsky V.G.: Bremsstrahlung radiation by a tunneling particle: a time-dependent description. Phys. Rev. C 60, 031602 (1999)

    Article  ADS  Google Scholar 

  31. Papenbrock T., Bertsch G.F.: Bremsstrahlung in alpha decay. Phys. Rev. Lett. 80, 4141 (1998)

    Article  ADS  Google Scholar 

  32. Boie H., Scheit H., Jentschura U.D., Koeck F., Lauer M., Milstein A.I., Terekhov I.S., Schwalm D.: Bremsstrahlung in? Decay Reexamined. Phys. Rev. Lett. 99, 022505 (2007)

    Article  ADS  Google Scholar 

  33. Jentschura U.D., Milstein A.I., Terekhov I.S., Boie H., Scheit H., Schwalm D.: Quasiclassical description of bremsstrahlung accompanying? Decay including quadrupole radiation. Phys. Rev. C 77, 014611 (2008)

    Article  ADS  Google Scholar 

  34. Hawking, S.W.: Chronology protection conjecture. Phys. Rev. D 46, 603 (1992). http://www.hawking.org.uk/space-and-time-warps.html

  35. Flambaum V.V., Zelevinsky V.G.: Radiation corrections increase tunneling probability. Phys. Rev. Lett. 83, 3108 (1999)

    Article  ADS  Google Scholar 

  36. Raspe, R.E.: The Surprising Adventures of Baron Münchhausen (1770). Available online through the Project Gutenberg: http://onlinebooks.library.upenn.edu/webbin/gutbook/lookup?num=3154

  37. Hagino K., Balantekin A.B.: Radiation correction to astrophysical fusion reactions and the electron screening problem. Phys. Rev. C 66, 055801 (2002)

    Article  ADS  Google Scholar 

  38. Bertulani C.A., de Paula D.T.: Stopping of swift protons in matter and its implication for astrophysical fusion reactions. Phys. Rev. C 62, 045802 (2000)

    Article  ADS  Google Scholar 

  39. Bertulani C.A.: Electronic stopping in astrophysical fusion reactions. Phys. Lett. B 585, 35 (2004)

    Article  ADS  Google Scholar 

  40. Lewenstein M., Liu W.V.: Optical lattices: orbital dance. Nat. Phys. 7, 101 (2011)

    Article  Google Scholar 

  41. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  42. Greiner M., Fölling S.: Condensed-matter physics: optical lattices. Nature 453, 736 (2008)

    Article  ADS  Google Scholar 

  43. Sachdev S.: Quantum magnetism and criticality. Nat. Phys. 4, 173 (2008)

    Article  Google Scholar 

  44. Bailey T., Bertulani C.A., Timmermans E.: Tunneling, diffusion, and dissociation of Feshbach molecules in optical lattices. Phys. Rev. A 85, 033627 (2012)

    Article  ADS  Google Scholar 

  45. Zelevinsky V.G., Flambaum V.V.: Quantum tunnelling of a complex system: effects of a finite size and intrinsic structure. J. Phys. G 31, 355 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Bertulani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertulani, C.A. Tunneling of Atoms, Nuclei and Molecules. Few-Body Syst 56, 727–736 (2015). https://doi.org/10.1007/s00601-015-0990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-0990-z

Keywords

Navigation