Skip to main content
Log in

Six-Bodies Calculations Using the Hyperspherical Harmonics Method

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this work we show results for light nuclear systems and small clusters of helium atoms using the hyperspherical harmonics basis. We use the basis without previous symmetrization or antisymmetrization of the state. After the diagonalization of the Hamiltonian matrix, the eigenvectors have well defined symmetry under particle permutation and the identification of the physical states is possible. We show results for systems composed up to six particles. As an example of a fermionic system, we consider a nucleon system interacting through the Volkov potential, used many times in the literature. For the case of bosons, we consider helium atoms interacting through a potential model which does not present a strong repulsion at short distances. We have used an attractive gaussian potential to reproduce the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the most widely used He–He interaction, the LM2M2 potential. In addition, we include a repulsive hypercentral three-body force to reproduce the trimer binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kievsky A., Marcucci L.E., Rosati S., Viviani M.: High-precision calculation of the triton ground state within the hyperspherical-harmonics method. Few Body Syst. 22, 1 (1997)

    Article  ADS  Google Scholar 

  2. Kievsky A., Rosati S., Viviani M., Marcucci L.E., Girlanda L.: A high-precision variational approach to three- and four-nucleon bound and zero-energy scattering states. J. Phys. G 35, 063101 (2008)

    Article  ADS  Google Scholar 

  3. Novoselsky A., Katriel J.: Hyperspherical functions with arbitrary permutational symmetry. Phys. Rev. A 49, 833 (1994)

    Article  ADS  Google Scholar 

  4. Novoselsky A., Barnea N.: Matrix elements of two-body operators between many-body symmetrized hyperspherical states. Phys. Rev. A 51, 2777 (1995)

    Article  ADS  Google Scholar 

  5. Barnea N.: Hyperspherical functions with arbitrary permutational symmetry: reverse construction. Phys. Rev. A 59, 1135 (1999)

    Article  ADS  Google Scholar 

  6. Timofeyuk N.: Improved procedure to construct a hyperspherical basis for the N-body problem: application to bosonic systems. Phys. Rev. C 78, 054314 (2008)

    Article  ADS  Google Scholar 

  7. Gattobigio M., Kievsky A., Viviani M., Barletta P.: Harmonic hyperspherical basis for identical particles without permutational symmetry. Phys. Rev. A 79, 032513 (2009)

    Article  ADS  Google Scholar 

  8. Varga K., Suzuki Y.: Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis. Phys. Rev. C 52, 2885 (1995)

    Article  ADS  Google Scholar 

  9. Timofeyuk N.K.: Shell model approach to construction of a hyperspherical basis for A identical particles: application to hydrogen and helium isotopes. Phys. Rev. C 65, 064306 (2002)

    Article  ADS  Google Scholar 

  10. Viviani M., Kievsky A., Rosati S.: Calculation of the -particle ground state within the hyperspherical harmonic basis. Phys. Rev. C 71, 024006 (2005)

    Article  ADS  Google Scholar 

  11. Gattobigio M., Kievsky A., Viviani M.: Nonsymmetrized hyperspherical harmonic basis for an A-body system. Phys. Rev. C 83, 024001 (2011)

    Article  ADS  Google Scholar 

  12. Gattobigio M., Kievsky A., Viviani M.: Few-nucleon bound states using the unsymmetrized HH expansion. J. Phys. Conf. Ser. 336, 012006 (2011)

    Article  ADS  Google Scholar 

  13. Lewerenz M.: Structure and energetics of small helium clusters: quantum simulations using a recent perturbational pair potential. J. Chem. Phys. 106, 4596 (1997)

    Article  ADS  Google Scholar 

  14. Blume D., Greene C.H.: Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 8053 (2000)

    Article  ADS  Google Scholar 

  15. Hiyama E., Kamimura M.: Variational calculation of ^4He tetramer ground and excited states using a realistic pair potential. Phys. Rev. A 85, 022502 (2012)

    Article  ADS  Google Scholar 

  16. von Stecher J., Greene C.: Correlated Gaussian hyperspherical method for few-body systems. Phys. Rev. A 80, 022504 (2009)

    Article  ADS  Google Scholar 

  17. Kievsky A., Garrido E., Romero-Redondo C., Barletta P.: The helium trimer with soft-core potentials. Few Body Syst. 51, 259 (2011)

    Article  ADS  Google Scholar 

  18. Gattobigio M., Kievsky A., Viviani M.: Spectra of helium clusters with up to six atoms using soft-core potentials. Phys. Rev. A 84, 052503 (2011)

    Article  ADS  Google Scholar 

  19. Kil’dyushov, M.S.: Hyperspherical functions of the “Tree” type in the n-body problem. Sov. J. Nucl. Phys. 15, 113 (1972). [Yad. Fiz. 15, 197 (1972)]

    Google Scholar 

  20. Kil’dyushov, M.S.: The n-body problem. Matrix elements of permutations. Sov. J. Nucl. Phys. 16, 117 (1973). [Yad. Fiz. 16, 217 (1972)]

    Google Scholar 

  21. Gattobigio M., Kievsky A., Viviani M.: Nonsymmetrized hyperspherical harmonics approach to A = 6 system. Few Body Syst. 50, 463 (2011)

    Article  ADS  Google Scholar 

  22. Nielsen E., Fedorov D.V., Jensen A.S.: The structure of the atomic helium trimers: halos and Efimov states. J. Phys. B 31, 4085 (1998)

    Article  ADS  Google Scholar 

  23. von Stecher J., DIncao J.P., Greene C.H.: Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 5, 417 (2009)

    Article  Google Scholar 

  24. Deltuva A.: Efimov physics in bosonic atom-trimer scattering. Phys. Rev. A 82, 040701(R) (2010)

    ADS  Google Scholar 

  25. von Stecher J.: Weakly bound cluster states of Efimov character. J. Phys. B At. Mol. Opt. Phys. 43, 101002 (2010)

    Article  ADS  Google Scholar 

  26. Gattobigio M., Kievsky A., Viviani M., Barletta P.: Non-symmetrized basis function for identical particles. Few Body Syst 45, 127 (2009)

    Article  ADS  Google Scholar 

  27. Hammer H.W., Platter L.: Universal properties of the four-body system with large scattering length. Eur. Phys. J. A 32, 113 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gattobigio.

Additional information

Presented at the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, Erice, Sicily, October 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattobigio, M., Kievsky, A. & Viviani, M. Six-Bodies Calculations Using the Hyperspherical Harmonics Method. Few-Body Syst 54, 657–666 (2013). https://doi.org/10.1007/s00601-012-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-012-0460-9

Keywords

Navigation