Skip to main content
Log in

Any J-State Solution of the Duffin–Kemmer–Petiau Equation for a Vector Deformed Woods–Saxon Potential

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

By using the Pekeris approximation, the Duffin–Kemmer–Petiau (DKP) equation is investigated for a vector deformed Woods–Saxon (dWS) potential. The parametric Nikiforov–Uvarov (NU) method is used in calculations. The approximate energy eigenvalue equation and the corresponding wave function spinor components are calculated for any total angular momentum J in closed form. The exact energy equation and wave function spinor components are also given for the J = 0 case. We use a set of parameter values to obtain the numerical values for the energy states with various values of quantum levels (n, J) and potential’s deformation constant q and width R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petiau G.: Contribution à la théorie des equations d’ondes pusculaires. Acad. R. Belg., A. Sci. Mém. Collect. 16(2), 1 (1936)

    Google Scholar 

  2. Petiau, G.: Ph.D Thesis, University of Paris (1936)

  3. Petiau G.: Contribution à la théorie des équations d’ondes corpusculaires. Acad. R. Belg. Cl. Sci. Mém. Collect. 8, 16 (1936)

    Google Scholar 

  4. Kemmer N.: Quantum theory of Einsteim-Bose particles and nuclear interaction. Proc. R. Soc. A 166, 127 (1938)

    Article  ADS  MATH  Google Scholar 

  5. Duffin R.J.: On the characteristic matrices of covariant systems. Phys. Rev. 54, 1114 (1938)

    Article  ADS  Google Scholar 

  6. Kemmer N.: The particle aspect of meson theory. Proc. R. Soc. A 173, 91 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  7. Clark B.C. et al.: Relativistic impulse approximation for meson-nucleus scattering in the Kemmer-Duffin-Petiau formalism. Phys. Rev. Lett. 55, 592 (1985)

    Article  ADS  Google Scholar 

  8. Kalbermann G.: Kemmer-Duffin-Petiau equation approach to pionic atoms. Phys. Rev. C 34, 2240 (1986)

    Article  ADS  Google Scholar 

  9. Kozack R.E. et al.: Relativistic deuteron-nucleus scattering in the Kemmer-Duffin-Petiau formalism. Phys. Rev. C 37, 2898 (1988)

    Article  ADS  Google Scholar 

  10. Kozack R.E.: Spin-one Kemmer-Duffin-Petiau equations and intermediate energy deuteron-nucleus scattering. Phys. Rev. C 40, 2181 (1989)

    Article  ADS  Google Scholar 

  11. Mishra V.K. et al.: Implications of various spin-one relativistic wave equations for intermediate energy deuteron-nucleus scattering. Phys. Rev. C 43, 801 (1991)

    Article  ADS  Google Scholar 

  12. Nedjadi Y., Barrett R.C.: On the properties of the Duffin-Kemmer-Petiau equation. J. Physics G 19, 87 (1993)

    Article  ADS  Google Scholar 

  13. Clark B.C. et al.: Pion-nucleus scattering at medium energies with densities from chiral effective field theories. Phys. Lett. B 427, 231 (1998)

    Article  ADS  Google Scholar 

  14. Nowakowski M.: The electromagnetic coupling in Kemmer- Duffin-Petiau theory. Phys. Lett. A 244, 329 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lunardi J.T., Pimentel B.M., Teixeira R.G., Valverde J.S.: Remarks on Duffin-Kemmer-Petiau theory and gauge invariance. Phys. Lett. A 268, 165 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fainberg V.Ya., Pimentel B.M.: Equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon-Fock equations. Theor. Math. Phys. 124, 1234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fainberg V.Ya., Pimentel B.M.: Duffin-Kemmer-Petiau and Klein-Gordon-Fock equations for electromagnetic Yang-Mills and external gravitational field interactions: proof of equivalence. Phys. Lett. A 271, 16 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Boutabia-Chéraitia B., Boudjedaa T.: Solution of DKP equation in Woods-Saxon potential. Phys. Lett. A 338, 97 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kulikov D.A., Tutik R.S., Yaroshenko A.F.: An alternative model for the Duffin-Kemmer-Petiau oscillator. Mod. Phys. Lett. A 20, 43 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Yaşuk F., Berkdemir C., Berkdemir A., Önem C.: Exact solutions of the Duffin-Kemmer-Petiau equation for the deformed Hulthen potential. Phys. Scr. 71, 340 (2005)

    Article  ADS  Google Scholar 

  21. Boztosun I., Karakoç M., Yaşuk F., Durmuş A.: Asymptotic iteration method solutions to the relativistic Duffin-Kemmer-Petiau equation. J. Math. Phys. 47, 062301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kasri Y., Chetouani L.: Energy spectrum of the relativistic Duffin-Kemmer-Petiau equation. Int. J. Theor. Phys. 47, 2249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Castro A.S.: Bound states of the Duffin-Kemmer-Petiau equation with a mixed minimal-nonminimal vector Cusp potential. J. Phys. A: Math. Theor. 44, 035201 (2011)

    Article  ADS  Google Scholar 

  24. Chargui Y., Trabelsia A., Chetouani L.: Bound-states of the (1+1)-dimensional DKP equation with a pseudoscalar linear plus Coulomb-like potential. Phys. Lett. A 374, 2907 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Woods R.D., Saxon D.S.: Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577 (1954)

    Article  ADS  Google Scholar 

  26. Williams W.S.C.: Nuclear and particle physics. Clarendon, Oxford (1996)

    Google Scholar 

  27. Garcia F. et al.: Structure of neutron rich palladium isotopes produced in heavy ion induced fission. Eur. Phys. J. A 6, 49 (1999)

    Article  ADS  Google Scholar 

  28. Goldberg V. et al.: Low-lying levels in 15 F and the shell model potential for drip-line nuclei. Phys. Rev. C 69, 031302 (2004)

    Article  ADS  Google Scholar 

  29. Syntfelt A. et al.: First structure information on the exotic 149 La from the β-decay of 149 Ba. Eur. Phys. J. A 20, 359 (2004)

    Article  ADS  Google Scholar 

  30. Diaz-Torres A., Scheid W.: Two center shell model with Woods-Saxon potentials: adiabatic and diabatic states in fusion. Nucl. Phys. A 757, 373 (2005)

    Article  ADS  Google Scholar 

  31. Guo J.Y., Sheng Q.: Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry. Phys. Lett. A 338, 90 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Chepurnov V.A., Nemirovsky P.E.: Spin-orbit interaction in deformed nuclei. Nucl. Phys. 49, 90 (1963)

    Article  Google Scholar 

  33. Chasman R.R., Wilkins B.D.: Spin-orbit interaction in strongly deformed nuclides. Phys. Lett. B 149, 433 (1984)

    Article  ADS  Google Scholar 

  34. Dudek J., Werner T.: New parameters of the deformed Woods-Saxon potential for A = 110−210 nuclei. J. Phys. G: nuclear Phys. 4, 1543 (1978)

    Article  ADS  Google Scholar 

  35. Flügge S.: Practical quantum mechanics. Springer-Verlag, Berlin (1974)

    Google Scholar 

  36. Ikhdair S.M., Sever R.: Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin-symmetry. Cent. Eur. J. Phys. 8, 652 (2010)

    Article  Google Scholar 

  37. Pekeris C.L.: The rotation-vibration coupling in diatomic molecules. Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  38. Berkdemir C.: Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term. Nucl. Phys. A 770, 32 (2006)

    Article  ADS  Google Scholar 

  39. Aydoğdu O., Sever R.: Effects of shell structure in the fusion reactions. Eur. Phys. J. A 43, 73 (2010)

    Article  ADS  Google Scholar 

  40. Nikiforov A.F., Uvarov V.B.: Special functions of mathematical physic. Birkhausr, Berlin (1988)

    Google Scholar 

  41. Tezcan C., Sever R.: A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48, 337 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Badalov V.H., Ahmadov H.I., Badalov S.V.: Any l-state analytical solution of the Klein-Gordon equation for the Woods-Saxon potential. Int. J. Mod. Phys. E 18, 1463 (2010)

    Article  ADS  Google Scholar 

  43. Badalov V.H., Ahmadov H.I., Badalov S.V.: Analytical solutions of the Schrödinger equation with the Woods-Saxon potential for arbitrary l-state. Int. J. Mod. Phys. E 18, 631 (2009)

    Article  ADS  Google Scholar 

  44. Gradsteyn I.S., Ryzhik I.M.: Tables of integrals, series and products. Academic Press, New York (1994)

    Google Scholar 

  45. Ikhdair, S.M., Hamzavi, M.: Approximate Dirac solutions of complex PT-symmetric Pöschl-Teller potential in view of spin and pseudo-spin symmetries, Phys. Scr. (2012)

  46. Yaşuk, F., Berkdemir, C., Berkdemir, A.: Nuclear science and its application. Proceeding of the Third Eurosian Conference (October 5-8, 2004)

  47. Berkdemir C., Berkdemir A., Sever R.: Polynomial solutions of the Schröger equation for the generalized Woods- Saxon potential. Phys. Rev. C 72, 027001 (2005)

    Article  ADS  Google Scholar 

  48. Berkdemir C., Berkdemir A., Sever R.: Editorial note: polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential. Phys. Rev. C 72, 027001 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hamzavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamzavi, M., Ikhdair, S.M. Any J-State Solution of the Duffin–Kemmer–Petiau Equation for a Vector Deformed Woods–Saxon Potential. Few-Body Syst 53, 461–471 (2012). https://doi.org/10.1007/s00601-012-0452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-012-0452-9

Keywords

Navigation