Skip to main content
Log in

Efimov Resonances in Ultracold Quantum Gases

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakthroughs have been achieved, confirming basic predictions of universal few-body theory and deepening our understanding of such systems. We review the basic ideas along with the fast experimental developments of the field, focussing on ultracold cesium gases as a well-investigated model system. Triatomic Efimov resonances, atom-dimer Efimov resonances, and related four-body resonances are discussed as central observables. We also present some new observations of such resonances, supporting and complementing the set of available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efimov V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970)

    Article  ADS  Google Scholar 

  2. Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of cesium atoms. Nature 440, 315–318 (2006)

    Article  ADS  Google Scholar 

  3. Ottenstein T.B., Lompe T., Kohnen M., Wenz A.N., Jochim S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008)

    Article  ADS  Google Scholar 

  4. Huckans J.H., Williams J.R., Hazlett E.L., Stites R.W., O’Hara K.M.: Three-body recombination in a three-state fermigas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009)

    Article  ADS  Google Scholar 

  5. Knoop S., Ferlaino F., Mark M., Berninger M., Schöbel H., Nägerl H.-C., Grimm R.: Observation of an Efimov-like trimer resonance in ultracold atom-dimer scattering. Nat. Phys. 5, 227–230 (2009)

    Article  Google Scholar 

  6. Zaccanti M., Deissler B., D’Errico C., Fattori M., Jona-Lasinio M., Müller S., Roati G., Inguscio M., Modugno G.: Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586 (2009)

    Article  Google Scholar 

  7. Barontini G., Weber C., Rabatti F., Catani J., Thalhammer G., Inguscio M., Minardi F.: Observation of heteronuclear atomic Efimov resonances. Phys. Rev. Lett. 103, 043201 (2009)

    Article  ADS  Google Scholar 

  8. Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Observation of universality in ultracold 7Li three-body recombination. Phys. Rev. Lett. 103, 163202 (2009)

    Article  ADS  Google Scholar 

  9. Pollack S.E., Dries D., Hulet R.G.: Universality in three- and four-body bound states of ultracold atoms. Science 326, 1683–1686 (2009)

    Article  ADS  Google Scholar 

  10. Nakajima S., Horikoshi M., Mukaiyama T., Naidon P., Ueda M.: Nonuniversal Efimov atom-dimer resonances in a three-component mixture of 6Li. Phys. Rev. Lett. 105, 023201 (2010)

    Article  ADS  Google Scholar 

  11. Gross N., Shotan Z., Kokkelmans S., Khaykovich L.: Nuclear-spin-independent short-range three-body physics in ultracold atoms. Phys. Rev. Lett. 105, 103203 (2010)

    Article  ADS  Google Scholar 

  12. Lompe T., Ottenstein T.B., Serwane F., Viering K., Wenz A.N., Zürn, G., Jochim S., Jochim G.: Atom-dimer scattering in a three-component Fermi gas. Phys. Rev. Lett. 105, 103201 (2010)

    Article  ADS  Google Scholar 

  13. Nakajima S., Horikoshi M., Mukaiyama T., Naidon P., Ueda M.: Measurement of an Efimov trimer binding energy in a three-component mixture of 6Li. Phys. Rev. Lett. 106, 143201 (2011)

    Article  ADS  Google Scholar 

  14. Efimov V.: Giant trimer true to scale. Nat. Phys. 5, 533–534 (2009)

    Article  Google Scholar 

  15. Greene C.H.: Universal insights from few-body land. Phys. Today 63(3), 40–45 (2010)

    Article  MathSciNet  Google Scholar 

  16. Ferlaino F., Grimm R.: Forty years of Efimov physics: How a bizarre prediction turned into a hot topic. Physics 3, 9 (2010)

    Article  Google Scholar 

  17. Efimov V.: Low-energy properties of three resonantly interacting particles. Sov. J. Nucl. Phys. 29, 546–553 (1979)

    Google Scholar 

  18. Ferlaino F., Knoop S., Berninger M., Harm W., D’Incao J.P., Nägerl H.-C., Grimm R.: Evidence for universal four-body states tied to an Efimov trimer. Phys. Rev. Lett. 102, 140401 (2009)

    Article  ADS  Google Scholar 

  19. Berninger M., Zenesini A., Huang B., Harm W., Nägerl H.-C., Ferlaino F., Grimm R., Julienne P.S., Hutson J.M.: Universality of the three-body parameter for Efimov states in ultracold cesium. Phys. Rev. Lett. 107, 120401 (2011)

    Article  ADS  Google Scholar 

  20. Taylor J.R.: Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. Dover Books on Engineering (1983)

  21. Chin C., Grimm R., Julienne P.S., Tiesinga E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  ADS  Google Scholar 

  22. Gao B.: Quantum-defect theory of atomic collisions and molecular vibration spectra. Phys. Rev. A 58, 4222–4225 (1998)

    Article  ADS  Google Scholar 

  23. Braaten E., Hammer H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259–390 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  24. Derevianko A., Johnson W.R., Safronova M.S., Babb J.F.: High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms. Phys. Rev. Lett. 82, 3589–3592 (1999)

    Article  ADS  Google Scholar 

  25. Jensen A.S., Riisager K., Fedorov D.V., Garrido E.: Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215–261 (2004)

    Article  ADS  Google Scholar 

  26. Gribakin G.F., Flambaum V.V.: Calculation of the scattering length in atomic collisions using the semiclassical approximation. Phys. Rev. A 48, 546–553 (1993)

    Article  ADS  Google Scholar 

  27. Petrov D.S.: Three-boson problem near a narrow Feshbach resonance. Phys. Rev. Lett. 93, 143201 (2004)

    Article  ADS  Google Scholar 

  28. Chin C., Vuletić V., Kerman A.J., Chu S.: High resolution Feshbach spectroscopy of cesium. Phys. Rev. Lett. 85, 2717 (2000)

    Article  ADS  Google Scholar 

  29. Chin C., Vuletić V., Kerman A.J., Chu S., Tiesinga E., Leo P.J., Williams C.J.: Precision Feshbach spectroscopy of ultracold Cs2. Phys. Rev. A 70, 032701 (2004)

    Article  ADS  Google Scholar 

  30. Mark M., Ferlaino F., Knoop S., Danzl J.G., Kraemer T., Chin C., Nägerl H.-C., Grimm R.: Spectroscopy of ultracold trapped cesium Feshbach molecules. Phys. Rev. A 76, 042514 (2007)

    Article  ADS  Google Scholar 

  31. Berninger, M., Zenesini, A., Huang, B., Nägerl, H.-C., Ferlaino, F., Grimm, R., Julienne, P.S., Hutson, J.M.: High magnetic-field scattering properties of ultracold cs atoms (2011, In preparation)

  32. Leo P.J., Williams C.J., Julienne P.S.: Collision properties of ultracold 133Cs atoms. Phys. Rev. Lett. 85, 2721–2724 (2000)

    Article  ADS  Google Scholar 

  33. Zenesini, A., Berninger, M., Huang, B., Nägerl, H.-C., Ferlaino, F., Grimm, R.: Creation of Bose Einstein condensates of cesium at high magnetic fields (2011, In preparation)

  34. Lee M.D., Köhler T., Julienne P.S.: Excited Thomas–Efimov levels in ultracold gases. Phys. Rev. A 76, 012720 (2007)

    Article  ADS  Google Scholar 

  35. Chin C., Vuletić V., Kerman A.J., Chu S.: High precision Feshbach spectroscopy of ultracold cesium collisions. Nucl. Phys. A 684, 641C–645C (2001)

    Article  ADS  Google Scholar 

  36. Gustavsson M., Haller E., Mark M.J., Danzl J.G., Rojas-Kopeinig G., Nägerl H.-C.: Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett. 100, 080404 (2008)

    Article  ADS  Google Scholar 

  37. Gustavsson, M.: A quantum gas with tunable interactions in an optical lattice. PhD thesis, University of Innsbruck (2008)

  38. Nielsen E., Macek J.H.: Low-energy recombination of identical bosons by three-body collisions. Phys. Rev. Lett. 83, 1566–1569 (1999)

    Article  ADS  Google Scholar 

  39. Esry B.D., Greene C.H., Burke J.P.: Recombination of three atoms in the ultracold limit. Phys. Rev. Lett. 83, 1751–1754 (1999)

    Article  ADS  Google Scholar 

  40. Weber T., Herbig J., Mark M., Nägerl H.-C., Grimm R.: Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys. Rev. Lett. 91, 123201 (2003)

    Article  ADS  Google Scholar 

  41. Fedichev P.O., Reynolds M.W., Shlyapnikov G.V.: Three-body recombination of ultracold atoms to a weakly bound s level. Phys. Rev. Lett. 77, 2921–2924 (1996)

    Article  ADS  Google Scholar 

  42. Wenz A.N., Lompe T., Ottenstein T.B., Serwane F., Zürn G., Jochim S.: Universal trimer in a three-component Fermi gas. Phys. Rev. A 80, 040702(R) (2009)

    Article  ADS  Google Scholar 

  43. D’Incao J.P., Suno H., Esry B.D.: Limits on universality in ultracold three-boson recombination. Phys. Rev. Lett. 93, 123201 (2004)

    Article  ADS  Google Scholar 

  44. Braaten E., Hammer H.W.: Enhanced dimer relaxation in an atomic and molecular Bose-Einstein condensate. Phys. Rev. A 70, 042706 (2004)

    Article  ADS  Google Scholar 

  45. D’Incao J.P., Esry B.D.: Scattering length scaling laws for ultracold three-body collisions. Phys. Rev. Lett. 94, 213201 (2005)

    Article  ADS  Google Scholar 

  46. Braaten E., Hammer H.-W.: Resonant dimer relaxation in cold atoms with a large scattering length. Phys. Rev. A 75, 052710 (2007)

    Article  ADS  Google Scholar 

  47. Weber T., Herbig J., Mark M., Nägerl H.-C., Grimm R.: Bose-Einstein condensation of cesium. Science 299, 232–235 (2003)

    Article  ADS  Google Scholar 

  48. Kraemer T., Herbig J., Mark M., Weber T., Chin C., Nägerl H.-C., Grimm R.: Optimized production of a cesium Bose-Einstein condensate. Appl. Phys. B 79, 1013–1019 (2004)

    Article  ADS  Google Scholar 

  49. Rychtarik D., Engeser B., Nägerl H.-C., Grimm R.: Two-dimensional Bose-Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92, 173003 (2004)

    Article  ADS  Google Scholar 

  50. Nägerl, H.-C., Kraemer, T., Mark, M., Waldburger, P., Danzl, J.G., Chin, C., Engeser, B., Lange, A.D., Pilch, K., Jaakkola, A., Grimm, R.: Experimental evidence for Efimov quantum states. In: Atomic 20 Physics AIP Conference Proceedings, vol. 869, pp. 269–277 (2006)

  51. Bringas F., Yamashita M.T., Frederico T.: Triatomic continuum resonances for large negative scattering lengths. Phys. Rev. A 69, 040702 (2004)

    Article  ADS  Google Scholar 

  52. Yamashita M., Frederico T., Tomio L.: Three-boson recombination at ultralow temperatures. Phys. Lett. A 363, 468–472 (2007)

    Article  ADS  Google Scholar 

  53. D’Incao J.P., Greene C.H., Esry B.D.: The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases. J. Phys. B: At. Mol. Opt. Phys. 42, 044016 (2009)

    Article  ADS  Google Scholar 

  54. Platter L., Shepard J.R.: Scaling functions applied to three-body recombination of 133Cs atoms. Phys. Rev. A 78, 062717 (2008)

    Article  ADS  Google Scholar 

  55. Massignan P., Stoof H.T.C.: Efimov states near a Feshbach resonance. Phys. Rev. A 78, 030701 (2008)

    Article  ADS  Google Scholar 

  56. Jona-Lasinio M., Pricoupenko L.: Three resonant ultracold bosons: Off-resonance effects. Phys. Rev. Lett. 104, 023201 (2010)

    Article  ADS  Google Scholar 

  57. Ferlaino F., Knoop S., Grimm R.: Cold molecules: theory, experiment, applications. In: Krems, R.V., Friedrich, B., Stwalley, W.C. (eds) Ultracold Feshbach molecules, CRC Press, Boca Raton (2009)

    Google Scholar 

  58. Knoop, S., Ferlaino, F., Berninger, M., Mark, M., Nägerl, H.-C., Grimm, R.: Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers. J. Phys.: Conf. Ser 194, 012064, arXiv:0907.4510 (2009)

    Google Scholar 

  59. Braaten E., Hammer H.-W.: Erratum: Resonant dimer relaxation in cold atoms with a large scattering length. Phys. Rev. A 79, 039905 (2009)

    Article  ADS  Google Scholar 

  60. Helfrich K., Hammer H.W.: Resonant atom-dimer relaxation in ultracold atoms. Europhys. Lett. 86, 53003 (2009)

    Article  ADS  Google Scholar 

  61. Thomas L.H.: The interaction between a neutron and a proton and the structure of H3. Phys. Rev. 47, 903–909 (1935)

    Article  ADS  MATH  Google Scholar 

  62. Bedaque P.F., Hammer H.-W., van Kolck U.: Renormalization of the three-body system with short-range interactions. Phys. Rev. Lett. 82, 463–467 (1999)

    Article  ADS  Google Scholar 

  63. Soldán P., Cvitaš M.T., Hutson J.M.: Three-body nonadditive forces between spin-polarized alkali-metal atoms. Phys. Rev. A 67, 054702 (2003)

    Article  ADS  Google Scholar 

  64. Naidon P., Ueda M.: The Efimov effect in lithium 6. C.R. Physique 12, 13 (2011)

    Article  ADS  Google Scholar 

  65. Hammer H.-W., Lähde T.A., Platter L.: Effective-range corrections to three-body recombination for atoms with large scattering length. Phys. Rev. A 75, 032715 (2007)

    Article  ADS  Google Scholar 

  66. Pricoupenko L.: Crossover in the Efimov spectrum. Phys. Rev. A 82, 043633 (2010)

    Article  ADS  Google Scholar 

  67. Wang Y., D’Incao J.P., Esry B.D.: Ultracold three-body collisions near Feshbach resonances. Phys. Rev. A 83, 042710 (2011)

    Article  ADS  Google Scholar 

  68. Thøgersen M., Fedorov D.V., Jensen A.S.: Universal properties of Efimov physics beyond the scattering length. Phys. Rev. A 78, 020501(R) (2008)

    Article  ADS  Google Scholar 

  69. Ji, C., Phillips, D.R., Platter, L.: The three-boson system at next-to-leading order in the pionless EFT. arXiv:1106.3837, (2011)

  70. Williams J.R., Hazlett E.L., Huckans J.H., Stites R.W., Zhang Y., O’Hara K.M.: Evidence for an excited-state Efimov trimer in a three-component fermigas. Phys. Rev. Lett. 103, 130404 (2009)

    Article  ADS  Google Scholar 

  71. Amado R.D., Greenwood F.C.: There is no Efimov effect for four or more particles. Phys. Rev. D 7, 2517 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  72. Adhikari S.K., Fonseca A.C.: Four-body Efimov effect in a Born-Oppenheimer model. Phys. Rev. D 24, 416–425 (1981)

    Article  ADS  Google Scholar 

  73. Naus H.W.L., Tjon J.A.: The Efimov effect in a four-body system. Few-Body Syst. 2, 121–126 (1987)

    Article  ADS  Google Scholar 

  74. Sørensen O., Fedorov D.V., Jensen A.S.: Correlated trapped bosons and the many-body Efimov effect. Phys. Rev. Lett. 89, 173002 (2002)

    Article  ADS  Google Scholar 

  75. Platter L., Hammer H.-W., Meißner U.-G.: Four-boson system with short-range interactions. Phys. Rev. A 70, 052101 (2004)

    Article  ADS  Google Scholar 

  76. Yamashita M.T., Tomio L., Delfino A., Frederico T.: Four-boson scale near a Feshbach resonance. Europhys. Lett. 75, 555–561 (2006)

    Article  ADS  Google Scholar 

  77. Hanna G.J., Blume D.: Energetics and structural properties of three-dimensional bosonic clusters near threshold. Phys. Rev. A 74, 063604 (2006)

    Article  ADS  Google Scholar 

  78. Thøgersen M., Fedorov D.V., Jensen A.S.: N-body Efimov states of trapped bosons. Europhys. Lett. 83, 30012 (2008)

    Article  ADS  Google Scholar 

  79. Castin Y., Mora C., Pricoupenko L.: Four-body Efimov effect for three fermions and a lighter particle. Phys. Rev. Lett. 105, 223201 (2010)

    Article  ADS  Google Scholar 

  80. Hammer H.-W., Platter L.: Universal properties of the four-body system with large scattering length. Eur. Phys. J. A 32, 113–120 (2007)

    Article  ADS  Google Scholar 

  81. von Stecher J., D’Incao J.P., Greene C.H.: Signatures of universal four-body phenomena and their relation to the Efimov effect. Nat. Phys. 5, 417–421 (2009)

    Article  Google Scholar 

  82. D’Incao J.P., von Stecher J., Greene C.H.: Universal four-boson states in ultracold molecular gases: Resonant effects in dimer–dimer collisions. Phys. Rev. Lett. 103, 033004 (2009)

    Article  ADS  Google Scholar 

  83. Mehta N.P., Rittenhouse S.T., D’Incao J.P., von Stecher J., Greene C.H.: General theoretical description of n-body recombination. Phys. Rev. Lett. 103, 153201 (2009)

    Article  ADS  Google Scholar 

  84. von Stecher J.: Weakly bound cluster states of Efimov character. J. Phys. B: At. Mol. Opt. Phys. 43, 101002 (2010)

    Article  ADS  Google Scholar 

  85. von Stecher, J.: Universal five- and six-body droplets tied to an Efimov trimer. arXiv:1106.2319 (2011)

  86. Bartenstein M., Altmeyer A., Riedl S., Geursen R., Jochim S., Chin C., Hecker Denschlag J., Grimm R., Simoni A., Tiesinga E., Williams C.J., Julienne P.S.: Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94, 103201 (2005)

    Article  ADS  Google Scholar 

  87. Lompe T., Ottenstein T.B., Servane F., Wenz A.N., Zürn G., Jochim S.: Radio-frequency association of Efimov trimers. Science 330, 940 (2010)

    Article  ADS  Google Scholar 

  88. D’Incao J.P., Esry B.D.: Enhancing the observability of the Efimov effect in ultracold atomic gas mixtures. Phys. Rev. A 73, 030703(R) (2006)

    Google Scholar 

  89. D’Incao J.P., Esry B.D.: Mass dependence of ultracold three-body collision rates. Phys. Rev. A 73, 030702 (2006)

    Article  Google Scholar 

  90. Nishida Y., Tan S.: Universal fermigases in mixed dimensions. Phys. Rev. Lett. 101, 170401 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  91. Nishida Y., Tan S.: Confinement-induced Efimov resonances in Fermi–Fermi mixtures. Phys. Rev. A 79, 060701(R) (2009)

    ADS  Google Scholar 

  92. Levinsen J., Tiecke T.G., Walraven J.T.M., Petrov D.S.: Atom-dimer scattering and long-lived trimers in fermionic mixtures. Phys. Rev. Lett 103, 153202 (2009)

    Article  ADS  Google Scholar 

  93. Wang Y., D’Incao J.P., Greene C.H.: Efimov effect for three interacting bosonic dipoles. Phys. Rev. Lett. 106, 233201 (2011)

    Article  ADS  Google Scholar 

  94. Petrov D.S., Salomon C., Shlyapnikov G.V.: Weakly bound molecules of fermionic atoms. Phys. Rev. Lett. 93, 090404 (2004)

    Article  ADS  Google Scholar 

  95. von Stecher J., Greene C.H.: Spectrum and dynamics of the BCS-BEC crossover from a few-body perspective. Phys. Rev. Lett. 99, 090402 (2007)

    Article  Google Scholar 

  96. Liu X.-J., Hu H., Drummond P.D.: Virial expansion for a strongly correlated fermigas. Phys. Rev. Lett. 102, 160401 (2009)

    Article  ADS  Google Scholar 

  97. Tan S.: Energetics of a strongly correlated Fermi gas. Ann. Phys. 323, 2952–2970 (2008)

    Article  ADS  MATH  Google Scholar 

  98. Braaten E.: How the tail wags the dog in ultracold atomic gases. Physics 2, 9 (2009)

    Article  Google Scholar 

  99. Daley A.J., Taylor J.M., Diehl S., Baranov M., Zoller P.: Atomic three-body loss as a dynamical three-body interaction. Phys. Rev. Lett. 102, 040402 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ferlaino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferlaino, F., Zenesini, A., Berninger, M. et al. Efimov Resonances in Ultracold Quantum Gases. Few-Body Syst 51, 113–133 (2011). https://doi.org/10.1007/s00601-011-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-011-0260-7

Keywords

Navigation