Skip to main content

Advertisement

Log in

Low-Energy Universality in Atomic and Nuclear Physics

  • Review Article
  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

An effective field theory developed for systems interacting through short-range interactions can be applied to systems of cold atoms with a large scattering length and to nucleons at low energies. It is therefore the ideal tool to analyze the universal properties associated with the Efimov effect in three- and four-body systems. In this progress report, we will discuss recent results obtained within this framework and report on progress regarding the inclusion of higher order corrections associated with the finite range of the underlying interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efimov V.: Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. 33, 563 (1970)

    Google Scholar 

  2. Braaten E., Hammer H.W.: Universality in few-body systems with large scattering length. Phys. Rept. 428, 259 (2006) [arXiv:cond-mat/0410417]

    Article  ADS  MathSciNet  Google Scholar 

  3. Braaten, E., Hammer, H.W.: Efimov Physics in Cold Atoms. Annals Phys. 322, 120 (2007) [arXiv:cond-mat/0612123]

  4. Bedaque, P.F., van Kolck, U.: Effective field theory for few nucleon systems. Ann. Rev. Nucl. Part. Sci. 52, 339 (2002) [arXiv:nucl-th/0203055]

    Google Scholar 

  5. Epelbaum, E., Hammer, H.W., Meißner, U.G.: Modern Theory of Nuclear Forces. arXiv:0811.1338 [nucl-th]

  6. Kaplan, D.B.: Five lectures on effective field theory. arXiv:nucl-th/0510023

  7. Lepage, G.P.: How to renormalize the Schrodinger equation. arXiv:nucl-th/9706029

  8. Polchinski, J.: Effective field theory and the Fermi surface. arXiv:hep-th/9210046

  9. Phillips, D.R.: Building light nuclei from neutrons, protons, and pions. Czech. J. Phys. 52, B49 (2002) [arXiv:nucl-th/0203040]

  10. van Kolck, U.: Effective field theory of short range forces. Nucl. Phys. A 645, 273 (1999) [arXiv:nucl-th/9808007]

  11. Kaplan, D.B., Savage, M.J., Wise, M.B.: A New expansion for nucleon-nucleon interactions. Phys. Lett. B 424, 390 (1998) [arXiv:nucl-th/9801034]

    Google Scholar 

  12. Kaplan, D.B., Savage, M.J., Wise, M.B.: Two nucleon systems from effective field theory. Nucl. Phys. B 534, 329 (1998) [arXiv:nucl-th/9802075]

    Google Scholar 

  13. Gegelia J.: EFT and NN Scattering. Phys. Lett. B 429, 227 (1998)

    Article  ADS  Google Scholar 

  14. Birse, M.C., McGovern, J.A., Richardson, K.G.: A Renormalization group treatment of two-body scattering. PiN Newslett. 15, 280 (1999) [arXiv:nucl-th/9911048]

    Google Scholar 

  15. Hammer, H.W., Furnstahl, R.J.: Effective field theory for dilute Fermi systems. Nucl. Phys. A 678, 277 (2000) [arXiv:nucl-th/0004043]

  16. Platter, L., Hammer, H.W., Meißner, U.-G.: Quasiparticle properties in effective field theory. Nucl. Phys. A 714, 250 (2003) [arXiv:nucl-th/0208057]

    Google Scholar 

  17. Bedaque, P.F., Hammer, H.W., van Kolck, U.: Renormalization of the three-body system with short range interactions. Phys. Rev. Lett. 82, 463 (1999) [arXiv:nucl-th/9809025]

    Google Scholar 

  18. Bedaque, P.F., Hammer, H.W., van Kolck, U.: The Three boson system with short range interactions. Nucl. Phys. A 646, 444 (1999) [arXiv:nucl-th/9811046]

    Google Scholar 

  19. Skorniakov G.V., Ter-Martirosian K.A.: Three Body Problem for Short Range Forces. 1. Scattering of Low Energy Neutrons by Deuterons. Sov. Phys. JETP 4, 648 (1957)

    MathSciNet  Google Scholar 

  20. Danilov, G.S.: On The Three-Body Problem with Short-Range Forces. Sov. Phys. JETP 13, 349 (1961) [J. Exptl. Theoret. Phys. (USSR) 40, 498 (1961)]

  21. Kharchenko, V.F.: Solution of the Skornyakov-Ter-Martirosian Equations for Three Nucleons with Cutoff at Large Momenta. Sov. J. Nucl. Phys. 16, 173 (1973) [Yad. Fiz. 16, 310 (1972)]

  22. Nielsen E., Fedorov D.V., Jensen A.S., Garrido E.: The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Wilson K.G.: Renormalization Group and Strong Interactions. Phys. Rev. D 3, 1818 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  24. Efimov V.: Force-range correction in the three-body problem: Application to three-nucleon systems. Phys. Rev. C 44, 2303 (1991)

    Article  ADS  Google Scholar 

  25. Efimov V.: Effective interaction of three resonantly interacting particles and the force range. Phys. Rev. C 47, 1876 (1993)

    Article  ADS  Google Scholar 

  26. Hammer, H.W., Mehen, T.: Range corrections to doublet S wave neutron deuteron scattering. Phys. Lett. B 516, 353 (2001) [arXiv:nucl-th/0105072]

    Google Scholar 

  27. Platter, L., Ji, C., Phillips, D.R.: Range Corrections to Three-Body Observables near a Feshbach Resonance. Phys. Rev. A 79, 022702 (2009) [arXiv:0808.1230 [cond-mat.other]]

    Google Scholar 

  28. Thøgersen M., Fedorov D.V., Jensen A.S.: Universal properties of Efimov physics beyond the scattering length approximation. Phys. Rev. A 78, 020501 (2008)

    Article  ADS  Google Scholar 

  29. Ji, C., Phillips, D.R., Platter, L.: in preparation

  30. Bedaque, P.F., Rupak, G., Griesshammer, H.W., Hammer, H.W.: Low-energy expansion in the three-body system to all orders and the triton channel. Nucl. Phys. A 714, 589 (2003) [arXiv:nucl-th/0207034]

    Google Scholar 

  31. Gabbiani, F.: Effective range in doublet S-wave neutron deuteron scattering. arXiv:nucl-th/0104088

  32. Platter, L., Phillips, D.R.: The Three-Boson System at Next-To-Next-To-Leading Order. Few Body Syst. 40, 35 (2006) [arXiv:cond-mat/0604255]

  33. Platter, L.: The Three-nucleon system at next-to-next-to-leading order. Phys. Rev. C 74, 037001 (2006) [arXiv:nucl-th/0606006]

    Google Scholar 

  34. Hammer, H.W., Phillips, D.R., Platter, L.: Pion-mass dependence of three-nucleon observables. Eur. Phys. J. A 32, 335 (2007) [arXiv:0704.3726 [nucl-th]]

    Google Scholar 

  35. Griesshammer, H.W.: Naive dimensional analysis for three-body forces without pions. Nucl. Phys. A 760, 110 (2005) [arXiv:nucl-th/0502039]

  36. Gasaneo G., Macek J.H.: Hyperspherical adiabatic eigenvalues for zero-range potentials. J. Phys. B 35, 2239 (2002)

    Article  ADS  Google Scholar 

  37. Platter, L., Hammer, H.W., Meißner, U.G.: The Four boson system with short range interactions. Phys. Rev. A 70, 052101 (2004) [arXiv:cond-mat/0404313]

    Google Scholar 

  38. Glöckle W.: The quantum mechanical few-body problem. Springer, Heidelberg (1983)

    Google Scholar 

  39. Schmid E.W., Ziegelmann H.: The quantum mechanical three-body problem. Vieweg, Wiesbaden (1971)

    Google Scholar 

  40. Hammer, H.W., Platter, L.: Universal Properties of the Four-Body System with Large Scattering Length. Eur. Phys. J. A 32, 113 (2007) [arXiv:nucl-th/0610105]

    Google Scholar 

  41. Schöllkopf W., Toennies J.P.: The nondestructive detection of the helium dimer and trimer. J. Chem. Phys. 104, 1155 (1996)

    Article  ADS  Google Scholar 

  42. Roudnev V., Yakovlev S.: Investigation of 4He3 trimer on the base of Faddeev equations in configuration space. Chem. Phys. Lett. 328, 97 (2000)

    Article  ADS  Google Scholar 

  43. Roudnev V.: Ultra-low energy elastic scattering in a system of three He atoms. Chem. Phys. Lett. 367, 95 (2003)

    Article  ADS  Google Scholar 

  44. Motovilov A.K., Sandhas W., Sofianos S.A., Kolganova E.A.: Binding energies and scattering observables in the 4He3 atomic system. Eur. Phys. J. D 13, 33 (2001)

    Article  ADS  Google Scholar 

  45. Kolganova E.A., Motovilov A.K., Sandhas W.: Scattering length of the helium-atom-helium-dimer collision. Phys. Rev. A 70, 052711 (2004)

    Article  ADS  Google Scholar 

  46. Blume D., Greene C.H.: Monte Carlo hyperspherical description of helium cluster excited states. J. Chem. Phys. 112, 8053 (2000)

    Article  ADS  Google Scholar 

  47. Lewerenz M.: Structure and energetics of small helium clusters: Quantum simulations using a recent perturbational pair potential. J. Chem. Phys. 106, 4596 (1997)

    Article  ADS  Google Scholar 

  48. Nakaichi-Maeda S., Lim T.K.: Zero-energy scattering and bound states in the 4He trimer and tetramer. Phys. Rev. A 28, 692 (1983)

    Article  ADS  Google Scholar 

  49. von Stecher, J., D’Incao, J.P., Greene, C.H.: Four-body legacy of the Efimov effect. Nat. Phys. 5, 417–421 (2009) [arXiv:0810.3876]

    Google Scholar 

  50. Kraemer T., Mark M., Waldburger P., Danzl J.G., Chin C., Engeser B., Lange A.D., Pilch K., Jaakkola A., Nägerl H.-C., Grimm R.: Evidence for Efimov quantum states in an ultracold gas of cesium atoms. Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  51. Ottenstein, T.B., Lompe, T., Kohnen, M., Wenz, A.N., Jochim, S.: Collisional stability of a three-component degenerate Fermi gas. Phys. Rev. Lett. 101, 203202 (2008) [arXiv:0806.0587]

    Google Scholar 

  52. Huckans, J.H., Williams, J.R., Hazlett, E.L., Stites, R.W., O’Hara, K.M.: Three-body recombination in a three-state Fermi gas with widely tunable interactions. Phys. Rev. Lett. 102, 165302 (2009) [arXiv:0810.3288]

    Google Scholar 

  53. Zaccanti, M., Modugno, G., D’Erico, C., Farroti, M., Roati, G., Inguscio, M.: talk at DAMOP 2008, State College, Pennsylvania, USA

  54. Thalhammer, G., Barontini, G., Catani, J., Rabatti, F., Weber, C., Simoni, A., Minardi, F., Inguscio, M.: Collisional and molecular spectroscopy in an ultracold Bose-Bose mixture. arXiv:0903.0976

  55. Ferlaino, F., Knoop, S., Berninger, M., Harm, W., D’Incao, J.P., Nägerl, H.-C., Grimm, R.: Evidence for Universal Four-Body States Tied to an Efimov Trimer. arXiv:0903.1276

  56. Bedaque, P.F., Braaten, E., Hammer, H.W.: Three body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908 (2000) [arXiv:cond-mat/0002365]

    Google Scholar 

  57. Esry B.D., Greene C.H., Suno H.: Threshold laws for three-body recombination. Phys. Rev. A 65, 010705 (2001)

    Article  Google Scholar 

  58. Macek J.H., Ovchinnikov S., Gasaneo G.: Solution for boson-diboson elastic scattering at zero energy in the shape-independent model. Phys. Rev. A 72, 032709 (2005)

    Article  ADS  Google Scholar 

  59. Macek J.H., Ovchinnikov S., Gasaneo G.: Exact solution for three particles interacting via zero-range potentials. Phys. Rev. A 73, 032704 (2006)

    Article  ADS  Google Scholar 

  60. Petrov, D.: talk at the Workshop on Strongly Interacting Quantum Gases, Ohio State University, April (2005)

  61. Nielsen E., Macek J.H.: Low-Energy Recombination of Identical Bosons by Three-Body Collisions. Phys. Rev. Lett. 83, 1566 (1999)

    Article  ADS  Google Scholar 

  62. Esry B.D., Greene C.H., Burke J.P.: Recombination of Three Atoms in the Ultracold Limit. Phys. Rev. Lett. 83, 1751 (1999)

    Article  ADS  Google Scholar 

  63. Braaten, E. Hammer, H.W.: Enhanced dimer deactivation in an atomic/molecular BEC. Phys. Rev. A 70, 042706 (2004) [arXiv:cond-mat/0303249]

    Google Scholar 

  64. Braaten, E., Hammer, H.W.: Three body recombination into deep bound states in a Bose gas with large scattering length. Phys. Rev. Lett. 87, 160407 (2001) [arXiv:cond-mat/0103331]

    Google Scholar 

  65. Efimov, V.: Low-Energy Properties Of Three Resonantly Interacting Particles. Sov. J. Nucl. Phys. 29, 546 (1979) [Yad. Fiz. 29, 1058 (1979)]

  66. Braaten, E., Hammer, H.W., Kang, D., Platter, L.: Three-Body Recombination of Identical Bosons with a Large Positive Scattering Length at Nonzero Temperature. Phys. Rev. A 78, 043605 (2008) [arXiv:0801.1732 [cond-mat.other]]

    Google Scholar 

  67. Hammer, H.W., Lahde, T.A., Platter, L.: Effective range corrections to three-body recombination for atoms with large scattering length. Phys. Rev. A 75, 032715 (2007) [arXiv:cond-mat/0611769]

    Google Scholar 

  68. Braaten, E., Hammer, H.W., Kang, D., Platter, L.: Three-body Recombination of Fermionic Atoms with Large Scattering Lengths. arXiv:0811.3578 [cond-mat.other]

  69. Naidon, P., Ueda, M.: A possible Efimov trimer state in 3-component lithium 6. arXiv:0811.4086

  70. Schmidt, R., Floerchinger, S., Wetterich, C.: Three-body loss in lithium from functional renormalization. Phys. Rev. A 79, 053633 (2009) [arXiv:0812.1191]

    Google Scholar 

  71. Braaten, E., Hammer, H.W.: Resonant dimer relaxation in cold atoms with a large scattering length. Phys. Rev. A 75, 052710 (2007) [arXiv:cond-mat/0610116]

    Google Scholar 

  72. Helfrich, K., Hammer, H.W.: Resonant Atom-Dimer Relaxation in Ultracold Atoms. Europhys. Lett. 86, 53003 (2009) [arXiv:0902.3410 [cond-mat.other]]

  73. Knoop, S., et al.: Observation of an Efimov-like resonance in ultracold atom-dimer scattering. Nat. Phys. 5, 227 (2009) [arXiv:0807.3306 [cond-mat]]

  74. von Stecher, J., D’Incao, J.P., Greene, C.H.: Universal Four-Boson States in Ultracold Molecular Gases: Resonant Effects in Dimer-Dimer Collisions. Phys. Rev. Lett. 103, 033004 (2009) [arXiv:0903.3348]

    Google Scholar 

  75. Epelbaum, E.: Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys. 57, 654 (2006) [arXiv:nucl-th/0509032]

    Google Scholar 

  76. Kong, X., Ravndal, F.: Proton proton fusion in effective field theory. Phys. Rev. C 64, 044002 (2001) [arXiv:nucl-th/0004038]

  77. Christlmeier, S., Griesshammer, H.W.: Pion-less Effective Field Theory on Low-Energy Deuteron Electro-Disintegration. Phys. Rev. C 77, 064001 (2008) [arXiv:0803.1307 [nucl-th]]

    Google Scholar 

  78. Arenhövel, H., Leidemann, W., Tomusiak, E.L.: General survey of polarization observables in deuteron electrodisintegration. Eur. Phys. J. A 23, 147 (2005) [arXiv:nucl-th/0407053]

    Google Scholar 

  79. Tamae T. et al.: Out-of-Plane Measurement of the D(e, ep) Coincidence Cross Section. Phys. Rev. Lett. 59, 2919 (1987)

    Article  ADS  Google Scholar 

  80. von Neumann-Cosel P. et al.: Deuteron Breakup in the 2H(e, ep) Reaction at Low Momentum Transfer and Close to Threshold. Phys. Rev. Lett. 88, 202304 (2002)

    Article  ADS  Google Scholar 

  81. Ryezayeva N. et al.: Measurement of the Reaction 2H(e, e′) at 180° Close to the Deuteron Breakup Threshold. Phys. Rev. Lett. 100, 172501 (2008)

    Article  ADS  Google Scholar 

  82. Ando, S.I.: \({pp \rightarrow pp \pi_0}\) near threshold in pionless effective theory. Eur. Phys. J. A 33, 185 (2007) [arXiv:0707.2157[nucl-th]]

  83. Phillips, D.R., Schindler, M.R., Springer, R.P.: An Effective-field-theory analysis of low-energy parity-violation in nucleon-nucleon scattering. arXiv:0812.2073 [nucl-th]

  84. Bedaque, P.F., Hammer, H.W., van Kolck, U.: Effective theory for neutron deuteron scattering: Energy dependence. Phys. Rev. C 58, 641 (1998) [arXiv:nucl-th/9802057]

    Google Scholar 

  85. Bedaque, P.F., Hammer, H.W., van Kolck, U.: Effective theory of the triton. Nucl. Phys. A 676, 357 (2000) [arXiv:nucl-th/9906032]

    Google Scholar 

  86. Platter, L., Hammer, H.W.: Universality in the triton charge form-factor. Nucl. Phys. A 766, 132 (2006) [arXiv:nucl-th/0509045]

    Google Scholar 

  87. Friar J.L., Gibson B.F., Tomusiak E.L., Payne G.L.: Configuration space Faddeev calculations. IV. Trinucleon charge density. Phys. Rev. C 24, 665 (1981)

    Article  ADS  Google Scholar 

  88. Friar J.L., Gibson B.F., Chen C.R., Payne G.L.: Scaling relations for triton ground-state observables. Phys. Lett. 161, 241 (1985)

    Google Scholar 

  89. Chen C.R., Payne G.L., Friar J.L., Gibson B.F.: Convergence of Faddeev partial-wave series for triton ground state. Phys. Rev. C 31, 2266 (1985)

    Article  ADS  Google Scholar 

  90. Sadeghi H., Bayegan S., Grießhammer H.W.: Effective field theory calculation of thermal energies and radiative capture cross-section. Phys. Lett. B 643, 263 (2006)

    Article  ADS  Google Scholar 

  91. Sadeghi H., Bayegan S.: \({Nd \rightarrow ^3}\) H γ with effective field theory. Nucl. Phys. A 753, 291 (2005)

    Article  ADS  Google Scholar 

  92. Rupak, G., Kong, X.W.: Quartet S-wave p d scattering in EFT. Nucl. Phys. A 717, 73 (2003) [arXiv:nucl-th/0108059]

  93. Platter, L., Hammer, H.W., Meißner, U.G.: On the correlation between the binding energies of the triton and the alpha-particle. Phys. Lett. B 607, 254 (2005) [arXiv:nucl-th/0409040]

    Google Scholar 

  94. Nogga, A., Kamada, H., Glöckle, W.: Modern nuclear force predictions for the alpha particle. Phys. Rev. Lett. 85, 944 (2000) [arXiv:nucl-th/0004023]

    Google Scholar 

  95. Epelbaum, E., Kamada, H., Nogga, A., Witała, H., Glöckle, W., Meißner, U.-G.: The Three nucleon and four nucleon systems from chiral effective field theory. Phys. Rev. Lett. 86, 4787 (2001) [arXiv:nucl-th/0007057]

    Google Scholar 

  96. Epelbaum, E., Nogga, A., Glöckle, W., Kamada, H., Meißner, U.-G., Witała, H.: Three nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002) [arXiv:nucl-th/0208023]

    Google Scholar 

  97. Beck D.H. et al.: Tritium form factors at low q. Phys. Rev. C 30, 1403 (1984)

    Article  ADS  Google Scholar 

  98. Beck D. et al.: Isoscalar and isovector form factors of 3H and 3He for Q below 2.9 fm−1 from electron-scattering measurements. Phys. Rev. Lett. 59, 1537 (1987)

    Article  ADS  Google Scholar 

  99. Nogga, A., Bogner, S.K., Schwenk, A.: Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002 (2004) [arXiv:nucl-th/0405016]

    Google Scholar 

  100. Stetcu, I., Barrett, B.R., van Kolck, U.: No-core shell model in an effective-field-theory framework. Phys. Lett. B 653, 358 (2007) [arXiv:nucl-th/0609023]

    Google Scholar 

  101. Bacca, S., Schwenk, A., Hagen, G., Papenbrock, T.: Helium halo nuclei from low-momentum interactions. arXiv:0902.1696 [nucl-th]

  102. Riisager K.: Nuclear halo states. Rev. Mod. Phys. 66, 1105 (1994)

    Article  ADS  Google Scholar 

  103. Zhukov M.V., Danilin B.V., Fedorov D.V., Bang J.M., Thompson I.J., Vaagen J.S.: Bound state properties of Borromean Halo nuclei: He-6 and Li-11. Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  104. Hansen P.G., Jensen A.S., Jonson B.: Nuclear halos. Ann. Rev. Nucl. Part. Sci. 45, 591 (1995)

    Article  ADS  Google Scholar 

  105. Tanihata I.: Neutron halo nuclei. J. Phys. G 22, 157 (1996)

    Article  ADS  Google Scholar 

  106. Jensen A.S., Riisager K., Fedorov D.V., Garrido E.: Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215 (2004)

    Article  ADS  Google Scholar 

  107. Yamashita M.T., Frederico T., Tomio L.: Trajectory of neutron-neutron-18C excited three-body state. Phys. Lett. B 660, 339 (2008)

    Article  ADS  Google Scholar 

  108. Yamashita, M.T., Frederico, T., Tomio, L.: Neutron-19C scattering near an Efimov state. Phys. Lett. B 670, 49 (2008) [arXiv:0808.3113 [nucl-th]]

    Google Scholar 

  109. Bertulani, C.A., Hammer, H.W., Van Kolck, U.: Effective field theory for halo nuclei. Nucl. Phys. A 712, 37 (2002) [arXiv:nucl-th/0205063]

    Google Scholar 

  110. Bedaque, P.F., Hammer, H.W., van Kolck, U.: Narrow resonances in effective field theory. Phys. Lett. B 569, 159 (2003) [arXiv:nucl-th/0304007]

    Google Scholar 

  111. Higa, R., Hammer, H.W., van Kolck, U.: alpha alpha Scattering in Halo Effective Field Theory. Nucl. Phys. A 809, 171 (2008) [arXiv:0802.3426 [nucl-th]]

  112. Canham, D.L., Hammer, H.W.: Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008) [ar-Xiv:0807.3258 [nucl-th]]

  113. TUNL nuclear data evaluation project, http://www.tunl.duke.edu/NuclData/

  114. Kirscher, J., Griesshammer, H.W., Shukla, D., Hofmann, H.M.: Universality in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons. arXiv:0903.5538 [nucl-th]

  115. Deltuva, A., Fonseca, A.C.: Four-nucleon scattering: Ab initio calculations in momentum space. Phys. Rev. C 75, 014005 (2007) [arXiv:nucl-th/0611029]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Platter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platter, L. Low-Energy Universality in Atomic and Nuclear Physics. Few-Body Syst 46, 139–171 (2009). https://doi.org/10.1007/s00601-009-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-009-0057-0

Keywords

Navigation