Skip to main content
Log in

Early endothelial alterations in non-insulin-dependent diabetes mellitus

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

The high incidence of cardiovascular morbidity and mortality in non-insulin-dependent diabetes mellitus with albuminuria cannot be fully explained by the presence of standard cardiovascular risk factors. We assessed some pathogenic factors of diabetic vascular atherosclerotic damage in 72 non-insulin-dependent diabetes mellitus patients controlled by diet alone and 60 healthy controls. Our study aim was to assess the early onset of these alterations and to correlate them with the presence of microalbuminuria. We determined their incidence in two carefully selected groups of diabetic patients without clinical signs of cardiovascular risk and complications, where diet alone achieved glycometabolic balance. Microalbuminuric patients had an alterated oxide-reductive balance and elevated values of plasminogen activator inhibitor, tissue plasminogen activator, von Willebrand factor, endothelin-1 and betathromboglobulin compared with the normoalbuminuric diabetics and controls. Our findings support the hypothesis that a state of endothelial dysfunction characterized by altered oxide-reductive balance, modified hemostasis and changes in the endothelial barrier properties occurs much earlier in non-insulin-dependent diabetic patient especially in diabetics with microalbuminuria. In addition, alterations in the oxide-reductive balance, and hemostasis occur early and may be an underlying cause of microangiopathic complications in microalbuminuric diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mori TA, Vandongen R, Douglas AJ, McCulloch RK, Burke V. Differential effect of aspirin on platelet aggregation in IDDM. Diabetes 1992; 3: 261.

    Article  Google Scholar 

  2. Schmitz A, Vaeth M. Microalbuminuria: a major risk factor in non insulin-dependent diabetics: a 10 years follow up study of 503 patients. Diabet Med 1988; 5: 126.

    PubMed  CAS  Google Scholar 

  3. Stiegler H, Standtl E, Shulz K, Roth R, Lehmaker W. Morbidity, mortality and albuminuria in type 2 diabetic patients: a three-year prospective study of a random cohort in general practice. Diabet Med 1992; 9: 646.

    PubMed  CAS  Google Scholar 

  4. Porta M, La Selva M, Molinatti P, Molinatti GM. Endothelial cell function in diabetic microangiopathy. Diabetologia 1987; 30: 601.

    PubMed  CAS  Google Scholar 

  5. Osterman H, Van de Loo J. Factors of the hemostatic system in diabetic patients: a survey of controlled studies. Hemostasis 1986; 16: 386.

    Google Scholar 

  6. Collier A, Wilson R, Bradley H, Thomson JA, Small M. Free radical activity in type 2 diabetes. Diabet Med 1990; 7: 27.

    PubMed  CAS  Google Scholar 

  7. Collier A, Rumley A, Rumley AG, Paterson JR, Leach JP, Lowe GDO, Small M. Free radical activity and haemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes 1992; 41: 909.

    Article  PubMed  CAS  Google Scholar 

  8. Schimtz A, Ingerslev J. Haemostatic measures in type 2 diabetic patients with microalbuminuria. Diabet Med 1990; 7: 521.

    Google Scholar 

  9. Collier A, Watson HHK, Patrick AW, Ludlam CA, Clarke BF. Effect of glycaemic control, metformin and gliclazide on platelet density and aggregability in recently diagnosed type 2 (non insulin-dependent) diabetic patients. Diabet Metab 1989; 15: 420.

    CAS  Google Scholar 

  10. Wierusz-Wysocka B, Wysocki H, Byks H, Zozulinska D, Wykretowicz A, Kazmierczak M. Metabolic control quality and free radical activity in diabetic patients. Diabetes Res Clin Pract 1995; 27: 193.

    Article  PubMed  CAS  Google Scholar 

  11. World Health Organisation Study Group. Diabetes mellitus. Technical Report. Series 727. Geneva: WHO; 1985: 1–113

    Google Scholar 

  12. Rose GA, Blackburn H. Cardiovascular survey methods. Geneva: World Health Organisation, 1968.

    Google Scholar 

  13. Fuller JH, Shipley MJ, Rose G, Jarret RJ, Keen H. Mortality from coronary heart disease risk and stroke in relation to the degree of glycaemia: the Withehall study. B M J 1983; 287: 867.

    CAS  Google Scholar 

  14. Spooner RJ, Weir RJ, Frier BM. Detection of microalbuminuria in diabetic patients using a simple latex agglutination test. Clin Chim Acta 1987; 166: 247.

    Article  PubMed  CAS  Google Scholar 

  15. Neil A, Hawkins M, Potok M, Throgood M, Cohen D, Mann JA. Prospective population-based study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes Care 1993; 16: 996.

    Article  PubMed  CAS  Google Scholar 

  16. Yagi K. Assay for serum lipid peroxide level and its chemical significance. In: Yagi K, ed. Lipid peroxides in biology and medicine. New York: Academic Press; 1982: 223–242.

    Google Scholar 

  17. Iversen SA, Cawood P, Dormandy TL. A method for the measurement of a diene-conjugated derivative of linoleic acid, 18: 2 (9, 11), in serum phospholipid and possible origins. Ann Clin Biochem 1985; 22: 137.

    PubMed  CAS  Google Scholar 

  18. Jennings PE, Jones AF, Florkowski CN, Lunec J, Barnett AH. Increased diene-conjugates in diabetic subjects with microangiopathy. Diabet Med 1987; 4: 452.

    Article  PubMed  CAS  Google Scholar 

  19. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990; 186: 407.

    Article  PubMed  CAS  Google Scholar 

  20. Paglia DE, Valentine WN. Studies on the quantiative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158.

    PubMed  CAS  Google Scholar 

  21. Lermon A, Edwards BS, Hallet JW, Henblein DM, Sandberg SM, Burnett SC. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl Med 1991; 325: 997.

    Google Scholar 

  22. Masaki T. Overview: reduced sensitivity of vascular response to endothelin. Circulation 1993; 87: v33.

  23. Luscher TF, Oemar BS, Boulanger CM, Hahn AWA. Molecular and cellular biology of endothelin and its receptors. I. J Hypertens 1993; 11: 7.

    Article  PubMed  CAS  Google Scholar 

  24. Luscher TF, Oeman BS, Boulanger CM, Hahn AWA. Molecular and cellular biology of endothelin and its receptors. II. J Hypertens 1993; 11: 121.

    Article  PubMed  CAS  Google Scholar 

  25. Ramuzzi G, Benigni A. Endothelins in the control of cardiovascular and renal function. Lancet 1993; 342: 589.

    Article  Google Scholar 

  26. Kon V, Badr KF. Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int 1991; 40: 1.

    Article  PubMed  CAS  Google Scholar 

  27. Iwashima Y, Sato T, Watanabe K, Ooshima E, Hiroishi S, Ishii H. Elevation of plasma thrombomodulin level in diabetic patients with early nephropathy. Diabetes 1990; 39: 983.

    Article  PubMed  CAS  Google Scholar 

  28. Gruden G, Cavallo-Perin P, Bazzon M, Stella S, Vuolo A, Pagano G. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 1994; 43: 426.

    Article  PubMed  CAS  Google Scholar 

  29. Gutteridge JMC. Free radicals in disease processes: a compilation of causes and consequences. Free Radic Res Commun 1993; 19: 141.

    Article  PubMed  CAS  Google Scholar 

  30. Shatos MA, Doherty SM, Hoak JC. Alterations in human vascular endothelin cell function by oxygen free radicals. Arterioscler Thromb 1991; 11: 594.

    PubMed  CAS  Google Scholar 

  31. Kaji H, Kuraskai M, Ito K, Saito T, Niioka T, Kojima Y, et al. Increased lipoperoxide value and glutathione peroxidase activity in blood plasma of type 2 (non insulin-dependent) diabetic women. Klin Wochenschr 1985; 63: 765.

    Article  PubMed  CAS  Google Scholar 

  32. O’Brien JR. Shear induced platelet aggregation. Lancet 1990; 335: 711.

    Article  PubMed  CAS  Google Scholar 

  33. Baynes JW. Role of oxide-reductive stress in the development of complications in diabetes. Diabetes 1991; 40: 405.

    Article  PubMed  CAS  Google Scholar 

  34. Hunt JV, Smith CCT, Wolf SP. Antioxidative glycosylation and possible involvement of peroxides and free radical in LDL modification by glucose. Diabetes 1990; 39: 1420.

    Article  PubMed  CAS  Google Scholar 

  35. Hyrata Y, Yoshimi I, Takaichi S, Yanagisawa M, Masaki T. Binding and down-regulation of a novel vasoconstrictor endothelin in cultured rat smooth muscle cells. FEBS Lett 239: 13–17, 1988b.

    Article  Google Scholar 

  36. Roubert P, Gillard V, Plas P, Guillon JM, Chabrier PE, Braquet P. Angiotensin II and phorbol-esters potently down-regulate endothelin-1 (ET-1) binding sites in vascular smooth muscle cells. Biochem Biophys Res Comm 1989; 164: 809.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neri, S., Bruno, C.M., D’Amico, R.A. et al. Early endothelial alterations in non-insulin-dependent diabetes mellitus. Int J Clin Lab Res 28, 100–103 (1998). https://doi.org/10.1007/s005990050027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050027

Key words

Navigation