Skip to main content
Log in

Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

Human lymphoproliferative diseases can be hypothesized to invade locally and to metastatize via mechanisms similar to those developed by a variety of solid tumors, i.e., the secretion of extracellular matrix-degrading enzymes and stimulation of angiogenesis. To assess this hypothesis, Namalwa, Raji, and Daudi cell lines (Burkitt’s lymphoma), LIK and SB cell lines (B-cell lymphoblastic leukemia), CEM and Jurkat cell lines (T-cell lymphoblastic leukemia), and U266 cell line (multiple myeloma) were evaluated for their capacity to produce matrix metalloproteinase-2 and -9, and urokinase-type plasminogen activator. These cell lines were also assessed for their ability: (1) to produce the angiogenic basic fibroblast growth factor and vascular endothelial growth factor; (2) to induce an angiogenic phenotype in cultured endothelial cells, represented by cell proliferation, chemotaxis, and morphogensis; (3) to stimulate angiogenesis in different in vivo experimental models. All cell lines expressed the mRNA for one or both metalloproteinases. Namalwa, Raji, LIK, SB, and U266 cells secreted the active form of both metalloproteinases, while Daudi, CEM, and Jurkat cells produced metalloproteinase-2 but not -9. In contrast, urokinase-type plasminogen activator was secreted only by SB cells. While Raji, LIK, SB, CEM, and Jurkat cells secreted both basic fibroblast growth factor and vascular endothelial growth factor, Daudi and U266 cells produced only the former, and Namalwa cells only the latter. Accordingly, the conditioned medium of all cell lines stimulated cell proliferation and/or chemotaxis in cultured endothelial cells, with the exception of that of Namalwa cells which was ineffective. The conditioned medium of CEM and Jurkat cells induced morphogenesis in cultured endothelial cells grown on a reconstituted basement membrane (Matrigel). Lastly, Namalwa, Raji, LIK, SB, U266, CEM, and Jurkat cells induced angiogenesis and mononuclear cell recruitment in the murine Matrigel sponge model and in a chick embryo chorioallantoic membrane assay. The extent of angiogenesis in both models was strictly correlated with the density of the mononuclear cell infiltrate. The results indicate that human lymphoproliferative disease cells possess both local and remote invasive ability via the secretion of matrix-degrading enzymes and the induction of angiogenesis which is fostered by host inflammatory cells and by an intervening ensemble of angiogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds. Hematology (Williams), 5th edn. New York: McGraw-Hill, 1995.

    Google Scholar 

  2. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27.

    Article  PubMed  CAS  Google Scholar 

  4. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993; 73: 161.

    PubMed  CAS  Google Scholar 

  5. Fessler L, Duncan K, Fessler JH, Salo T, Tryggvason K. Characterization of the procollagen IV cleavage products produced by a specific tumor collagenase. J Biol Chem 1984; 259: 9783.

    PubMed  CAS  Google Scholar 

  6. Murphy G, Ward R, Hembry RM, Reynolds JJ, Kühn K, Tryggvason K. Characterization of gelatinase from pig polymorphonuclear leukocytes. Biochem J 1989; 258: 463.

    PubMed  CAS  Google Scholar 

  7. Werb Z, Banda MJ, Jones A. Degradation of connective tissue matrices by macrophages. I. Proteolysis of elastin, glycoproteins and collagen by proteinases isolated from macrophages. J Exp Med 1980; 152: 1340.

    Article  PubMed  CAS  Google Scholar 

  8. Noël A, Emonard H, Polette M, Birembaut P, Foidart JM. Role of matrix, fibroblasts and type IV collagenases in tumor progression and invasion. Pathol Res Pract 1994; 190: 934.

    PubMed  Google Scholar 

  9. Ray JM, Stetler-Stevenson WG. The role of matrix metalloproteases and their inhibitors in tumour invasion, metastasis and angiogenesis. Eur Respir J 1994; 7: 2062.

    PubMed  CAS  Google Scholar 

  10. Testa JE, Quigley JP. The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev 1990; 9: 353.

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J. Tumor angiogenesis. In: Holland JF, Frei E III, Bast RC, Kufe DW Jr, Morton DL, Weichselbaum RR, eds. Cancer medicine, 3rd edn, vol I. Philadelphia: Lea and Febiger; 1993: 153–170.

    Google Scholar 

  12. Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993; 71: 1368.

    Article  PubMed  CAS  Google Scholar 

  13. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995; 147: 9.

    PubMed  CAS  Google Scholar 

  14. Mostafa LK, Jones DB, Wright DH. Mechanism of the induction of angiogenesis by human neoplastic lymphoid tissue: studies on the chorioallantoic membrane (CAM) of the chick embryo. J Pathol 1990; 132: 191.

    Article  Google Scholar 

  15. Kobayashi M, Hamada J, Li YQ, Shinobu N, Imamura M, Okada F, Takeichi N, Hosokawa M. A possible role of 92 kDa type IV collagenase in the extramedullary tumor formation in leukemia. Jpn J Cancer Res 1995; 86: 298.

    PubMed  CAS  Google Scholar 

  16. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629.

    Article  PubMed  CAS  Google Scholar 

  17. Edgell CJS, McDonald CC, Graham JB. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983; 80: 3734.

    Article  PubMed  CAS  Google Scholar 

  18. Albini A, Repetto L, Carlone S, Benelli R, Soria M, Monaco L, Gendelman R, De Filippi P, Bussolino F, Parravicini C. Characterization of Kaposi’s sarcoma-derived cell cultures from an epidemic and a classic case. Int J Oncol 1992; 1: 723.

    Google Scholar 

  19. De Vita S, Sansonno D, Dolcetti R, Ferraccioli G, Carbone A, Cornacchiulo V, Santini G, Crovatto M, Gloghini A, Dammacco F, Boiocchi M. Hepatitis C virus within a malignant lymphoma lesion in the course of type II mixed cryoglobulinemia. Blood 1995; 88: 1687.

    Google Scholar 

  20. Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92-and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem 1991; 266: 16485.

    PubMed  CAS  Google Scholar 

  21. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEvan RN. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239.

    PubMed  CAS  Google Scholar 

  22. Colombi M, Barllati S, Magdelenat H, Fisher-Szagarz B. Relationship between multiple forms of plasminogen activator in human breast tumors and plasma and presence of metastasis in lymph nodes. Cancer Res 1986; 44: 2971.

    Google Scholar 

  23. Presta M, Majer JAM, Ragnotti G. The mitogenic signaling pathway but not plasminogen activator-induced pathway of basic fibroblast growth factor is mediated through protein kinase C in fetal bovine aortic endothelial cells. J Cell Biol 1989; 109: 1877.

    Article  PubMed  CAS  Google Scholar 

  24. Bussolino F, Arese M, Montrucchio G, Barra L, Primo L, Benelli R, Sanavio F, Aglietta M, Ghico D, Rola-Pleszczynski M, Bosia A, Albini A, Camussi G. Platelet activating factor produced in vitro by Kaposi’s sarcoma cells induces and sustains in vivo angiogenesis. J Clin Invest 1995; 96: 940.

    Article  PubMed  CAS  Google Scholar 

  25. Kueng K, Silfer E, Eppenberger V. Quantification of cells cultured on 96-well plates. Anal Biochem 1989; 182: 16.

    Article  PubMed  CAS  Google Scholar 

  26. Albini A, Melchiori A, Parodi S, Kleinman H. Chemotaxis and invasiveness. In: Lapière CM, Krieg T, eds. Connective tissue disease of the skin. New York: Marcel Dekker; 1993: 129–145.

    Google Scholar 

  27. Passaniti ARM, Taylor R, Pili Y, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 1992; 67: 519.

    PubMed  CAS  Google Scholar 

  28. Drabkin DL, Austin JH. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J Biol Chem 1932; 98: 719.

    CAS  Google Scholar 

  29. Vacca A, Ribatti D, Roncali L, Lospalluti M, Serio G, Carrel S, Dammacco F. Melanocyte tumor progression is associated with changes in angiogenesis and expression of the 67-kilodalton laminin receptor. Cancer 1993; 72: 455.

    Article  PubMed  CAS  Google Scholar 

  30. Ribatti D, Urbinati C, Nico B, Rusnati M, Roncali L, Presta M. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev Biol 1995; 170: 39.

    Article  PubMed  CAS  Google Scholar 

  31. Olivo M, Bhardway R, Schulze-Osthoff K, Sorg C, Jürgen-Jacob H, Flamme I. A comparative study on the effects of tumor necrosis factor-α (TNF-α), human angiogenic factor (h-AF) and basic fibroblast growth factor (bFGF) on the chorioallantoic membrane of the chick embryo. Anat Rec 1992; 234: 105.

    Article  PubMed  CAS  Google Scholar 

  32. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase gene family. Proc Natl Acad Sci USA 1990; 85: 5578.

    Article  Google Scholar 

  33. Dano K, Andreasen PA, Grondahl-Hansen J, Krinstensen JP, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation and cancer. Adv Cancer Res 1985; 44: 139.

    Article  PubMed  CAS  Google Scholar 

  34. Blotnick S, Peoples GE, Freeman MR, Eberlein TJ, Klagsbrun MT. Lymphocyte synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA 1994; 91: 2890.

    Article  PubMed  CAS  Google Scholar 

  35. Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsburn M. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 1995; 55: 4140.

    PubMed  CAS  Google Scholar 

  36. Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 1989; 86: 3978.

    Article  PubMed  CAS  Google Scholar 

  37. Pepper MS, Mandriota SJ, Vassalli JD, Orci L, Montesano R. Angiogenesis-regulating cytokines: activities and interactions. Curr Top Microbiol Immunol 1996; 213: 31.

    PubMed  CAS  Google Scholar 

  38. Kossakowska AE, Huchcroft SA, Urbanski SJ, Edwards DR. Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin’s lymphomas in humans. Br J Cancer 1996; 73: 1401.

    PubMed  CAS  Google Scholar 

  39. Ries C, Kolb H, Petrides PE. Regulation of 92-kD gelatinase release in HL-60 leukemia cells: tumor necrosis factor-α as an autocrine stimulus for basal- and phorbol ester-induced secretion. Blood 1994; 83: 3638.

    PubMed  CAS  Google Scholar 

  40. Watanabe H, Nakanishi I, Yamashita K, Hayakawa T, Okada Y. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U-937 monoblastoid cells: correlation with cellular invasion. J Cell Sci 1993; 104: 991.

    PubMed  CAS  Google Scholar 

  41. Dittmann KH, Lottspeich F, Ries C, Petrides PE. Leukemic cells (HL-60) produce a novel extracellular matrix-degrading proteinase that is not inhibited by tissue inhibitors of matrix metalloproteinases (TIMPs). Exp Hematol 1995; 23: 155.

    PubMed  CAS  Google Scholar 

  42. Vassalli J-D, Pepper MS. Membrane proteases in focus. Nature 1994; 370: 14.

    Article  PubMed  CAS  Google Scholar 

  43. Philip-Joet F, Alessi MC, Philip-Joet C, Aillaud M, Barriere JR, Arnauld A, Juhan-Vague I. Fibrinolytic and inflammatory processes in pleural effusions. Eur Respir J 1995; 8: 1352.

    Article  PubMed  CAS  Google Scholar 

  44. Norrby K. Heparin and angiogenesis: a low molecular weight fraction inhibits and a high molecular weight fraction stimulates angiogenesis systemically. Haemostasis 1993; 23: 141.

    PubMed  CAS  Google Scholar 

  45. Ferrara N. Vascular endothelial growth factor. Eur J Cancer 1996; 32A: 2413.

    Article  PubMed  CAS  Google Scholar 

  46. Rusnati M, Presta M. Interaction of angiogenic basic fibroblast growth factor with endothelial heparan sulfate proteoglycans. Biological implications in neovascularization. Int J Clin Lab Res 1996; 26: 15.

    Article  PubMed  CAS  Google Scholar 

  47. Brach MA, Hermann F. Interleukin 6: present and future. Int J Clin Lab Res 1992; 22: 143.

    Article  PubMed  CAS  Google Scholar 

  48. Adami F, Guarini A, Pini M, Siviero F, Sancetta R, Massaia M, Trentin L, Foà R, Semenzato G. Serum levels of tumor necrosis factor-α in patients with B-cell chronic lymphocytic leukaemia. Eur J Cancer 1994; 30A: 1259.

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura M, Merchav S, Carter A, Ernst TJ, Demetri GD, Furukawa Y, Anderson K, Freedman AS, Griffin JD. Expression of a novel 3.5-kb macrophage colony-stimulating factor transcript in human myeloma cells. J Immunol 1989; 143: 3543.

    PubMed  CAS  Google Scholar 

  50. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placental growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271: 17629.

    Article  PubMed  CAS  Google Scholar 

  51. Sozzani S, Locati M, Allavena P, Van Damme J, Mantovani A. Chemokines: a superfamily of chemotactic cytokines. Int J Clin Lab Res 1996; 25: 69.

    Article  Google Scholar 

  52. Polverini PF. How the extracellular matrix and macrophages contribute to angiogenesis-dependent diseases. Eur J Cancer 1996; 32A: 2430.

    Article  PubMed  CAS  Google Scholar 

  53. Kittas C, Hansmann ML, Borisch B, Feller AC, Lennert K. The blood microvasculature in T-cell lymphomas. A morphological, ultrastructural and immunohistochemical study. Virchows Arch [A] 1985; 405: 439.

    Article  CAS  Google Scholar 

  54. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spectrum in the stroma of B-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol 1996; 56: 45.

    Article  PubMed  CAS  Google Scholar 

  55. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Folkman J. Spectrum of tumor angiogenesis in bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815.

    PubMed  CAS  Google Scholar 

  56. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503.

    Article  PubMed  CAS  Google Scholar 

  57. Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 1996; 32A: 2534.

    Article  PubMed  CAS  Google Scholar 

  58. Talbot DC, Brown PD. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer 1996; 32A: 2528.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacca, A., Ribatti, D., Iurlaro, M. et al. Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis. Int J Clin Lab Res 28, 55–68 (1998). https://doi.org/10.1007/s005990050018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050018

Key words

Navigation